Magnetic domain

Japanese: 磁区 - じく
Magnetic domain

The inside of a ferromagnetic material is divided into many tiny regions with different directions of spontaneous magnetization. These regions are called magnetic domains. In a magnetic domain, the magnetic moments of the atoms (atomic magnets) all face the same direction, forming spontaneous magnetization. If the magnetic domains were not divided and all the atomic magnets of a ferromagnetic material were to face the same direction, magnetic poles would appear on the surface of the magnetic material, generating a magnetic field inside and outside. The spontaneous magnetization of a ferromagnetic material would be placed in this magnetic field that it created, generating magnetic energy (magnetostatic energy). The lower the energy in nature, the more stable it is, but the increase in the energy of a magnetic material due to this magnetostatic energy is the opposite of this. Therefore, in order to suppress the generation of magnetostatic energy, a ferromagnetic material divides itself into several magnetic domains within itself, and arranges them in a complex geometrical arrangement so that the spontaneous magnetization in each magnetic domain does not generate a magnetic pole on the surface of the magnetic material. The size (area) of a magnetic domain varies depending on the material, but is approximately 10 -12 m 2 to 10 -6 m 2. A ferromagnetic material does not look like a magnet unless it has been exposed to a magnetic field. This is because the spontaneous magnetization of each magnetic domain cancels out each other and does not appear externally. When a magnetic field is applied from the outside, the volume of the magnetic domain whose spontaneous magnetization is oriented in the direction closest to the direction of the magnetic field increases. When the magnetic field is strengthened, the entire domain eventually becomes one magnetic domain. This state is called magnetic saturation, and the magnetization observed at this time is called saturation magnetization. The magnitude of saturation magnetization is equal to the spontaneous magnetization.

Each magnetic domain is separated by a boundary called a domain wall. The domain wall has a finite thickness. If the domain wall is thin and magnetic domains with significantly different spontaneous magnetization directions come into contact, a large mutual interaction (exchange interaction) energy occurs between the magnetizations of the two domains, and the free energy of the magnetic material increases. Inside the domain wall, atomic magnets gradually change direction from the magnetization direction of one domain to the magnetization direction of the other domain across several hundred atomic layers, suppressing the increase in this energy. The atomic magnets in the magnetic domain are oriented in a certain direction (the easy magnetization direction) due to the magnetic anisotropy inherent to the material, but when the atomic magnets change direction from the magnetization direction in the magnetic domain within the domain wall, the magnetic anisotropy energy increases. The energy caused by the interaction can be suppressed by making the domain wall thicker and increasing the atomic layers, but conversely, the energy caused by the magnetic anisotropy increases as the number of atomic magnets deviated from the easy magnetization direction increases. The thickness of the domain wall is determined so that the sum of these energies (domain wall energy) is minimized. In the case of iron, a typical ferromagnetic material, the thickness of the magnetic domain wall is about one ten-millionth of a meter. The shape and arrangement of the magnetic domains are extremely important factors in the application of ferromagnetic materials, and can be controlled by adjusting the shape of the ferromagnetic material, the magnitude of magnetic anisotropy, the magnitude of spontaneous magnetization, etc.

[Yujiro Nagata]

"Fundamentals of Magnetic Engineering 1 and 2" by Keizo Ohta (1973, Kyoritsu Shuppan)""Physics of Ferromagnetic Materials, Vol. 1 and 2, by Satoshi Kondo (1978, 1984, Shokabo)" ▽ "Magnetism and Magnetic Materials for Engineers, by Tetsuo Kato (1991, Nikkan Kogyo Shimbun)""Maruzen Experimental Physics Lecture Series 6: Magnetic Measurement 1" edited by Keiichiro Kon and Hiroshi Yasuoka (2000, Maruzen)"

[Reference] | Ferromagnetic material | Magnetic moment | Spontaneous magnetization | Saturation magnetization

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

強磁性体の内部は、自発磁化の向きの異なる数多くの微少な領域に分かれている。この領域を磁区という。磁区内では、原子の磁気モーメント(原子磁石)は皆同じ方向を向き、自発磁化を形成している。もし磁区に分かれず、強磁性体の原子磁石がすべて同じ方向を向くと、磁性体の表面に磁極が現れ、内外に磁界を生じる。強磁性体の自発磁化は、この自らつくりだした磁界の中に置かれることになり、磁気エネルギー(静磁エネルギー)が発生する。自然界はエネルギーが低いほど安定であるが、この静磁エネルギーによる磁性体のエネルギーの増加はこれとは相反する。そこで、強磁性体は、静磁エネルギーの発生を抑えるため、自ら内部でいくつかの磁区に分かれ、それぞれの磁区内の自発磁化が、磁性体の表面に磁極を発生しないように、複雑な幾何学的配置をする。磁区の大きさ(面積)は物質によって異なるが、およそ10-12m2から10-6m2程度である。強磁性体は、磁界にさらされたことがなければ見かけは磁石のようには見えない。これは、各磁区の自発磁化が互いに打ち消し合って、外部に現れないためである。外部から磁界をかけると、その磁界の向きに一番近い方向に自発磁化が向いている磁区の体積が増加する。磁界を強くすると、ついには全体が一つの磁区となる。この状態を磁気飽和といい、このとき観察される磁化を飽和磁化という。飽和磁化の大きさは自発磁化に等しい。

 各磁区は磁壁とよばれる境界によって仕切られている。磁壁は有限の厚みをもっている。もし磁壁に厚みがなく、自発磁化の向きが大きく異なる磁区が接すると、互いの磁化の間に大きな相互作用(交換相互作用)のエネルギーが生じ、磁性体の自由エネルギーが増加する。磁壁の内部では数百原子層にわたって、一方の磁区の磁化の向きから他方の磁区の磁化の向きに原子磁石が徐々に向きをかえ、このエネルギーの増加を抑えている。磁区内の原子磁石は、物質固有の磁気異方性によって、一定の方向(磁化容易方向)を向いているが、磁壁内で原子磁石が磁区内の磁化の方向から向きを変えると、磁気異方性エネルギーが増加する。相互作用に起因するエネルギーは磁壁が厚く、原子層を増すほど抑制できるが、逆に磁気異方性に起因するエネルギーは磁化容易方向からずれた原子磁石が増えるほど増加する。磁壁の厚みはこれらのエネルギーの和(磁壁エネルギー)が最小になるように決定される。代表的な強磁性体である鉄の場合、磁壁の厚みは約1000万分の1メートル程である。磁区の形と配置は強磁性体の応用面においてきわめて重要な因子となるが、強磁性体の形状、磁気異方性の大きさ、自発磁化の大きさなどを調整することにより制御することができる。

[永田勇二郎]

『太田恵造著『磁気工学の基礎1、2』(1973・共立出版)』『近角聰信著『強磁性体の物理』上下(1978、1984・裳華房)』『加藤哲男著『技術者のための磁気・磁性材料』(1991・日刊工業新聞社)』『近桂一郎・安岡弘志編『丸善実験物理学講座6 磁気測定1』(2000・丸善)』

[参照項目] | 強磁性体 | 磁気モーメント | 自発磁化 | 飽和磁化

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Jig (English spelling)

>>:  Axis - axis

Sei
Sei
Blog    

Recommend

Emotional illusion

…(7)These physiological illusions occur even in a...

Masakazu Toyama

A Meiji period scholar and cultural figure. Born ...

Akagutsu (red shoes) - Akagutsu (English spelling) starry handfish

A marine fish of the family Scutigeridae in the or...

Kanra Tayu - Kanra no Tayu

…Only the lower volume of this two-volume set rem...

Spiral curve - Spiral curve

A special curve in a track to avoid the severe sh...

Public prostitute

A general term for officially recognized prostitu...

Steam locomotive - steam locomotive

A locomotive powered by a steam engine. It is als...

Memorial tablet - Ihai

A rectangular wooden tablet on which the posthumo...

Work gloves

A type of glove. An abbreviation for military glo...

Giant chromosome

A chromosome that has developed particularly larg...

Terminalia

...Later, the Temple of Jupiter was built on the ...

Numata [city] - Numata

A city in northern Gunma Prefecture. It was incorp...

Helsingborg (English spelling)

A port city in Malmöhus County, at the southern ti...

Hall, Peter

Born: 22 November 1930, Bury St Edmunds [Died] Sep...

Somei Uzawa

Lawyer and politician. Born in Chiba Prefecture. G...