Blast furnace - kouro (English spelling)

Japanese: 高炉 - こうろ(英語表記)blast furnace
Blast furnace - kouro (English spelling)

Another name for a blast furnace. A furnace used in the process of separating gangue from metal ore to obtain molten metal (metal smelting and refining) is called a blast furnace, and among them, the blast furnace used to produce pig iron from iron ore is called a blast furnace because it is so tall.

[Hara Zenshiro]

History of the Blast Furnace

The origin of the blast furnace dates back to the vertical iron-making furnace (Stückofen in German), which developed in central Europe in the Middle Ages. Iron ore and charcoal were charged in layers from above the vertical furnace, and air was pumped in from below to burn the charcoal. The hot carbon monoxide gas produced deprived the iron oxide in the iron ore of oxygen (reduction), turning it into metallic iron. The product of the stückofen was solid iron ingots. In the early 15th century, some stückofen in the lower Rhine region produced molten cast iron by increasing the blowing power of a waterwheel-driven bellows to increase the temperature inside the furnace. In this furnace, the hot metallic iron absorbed carbon and became cast iron with a low melting point. Also, gangue (mainly silicate) in the ore combined with lime added to the charge to become molten slag, which separated from the cast iron and flowed out. It is said that early blast furnaces were developed for the purpose of producing cast iron guns and shotguns.

In the 16th century, blast furnaces were 6 meters tall and had a daily production of about 1 ton. In the 18th century, England succeeded in using coal coke instead of charcoal in blast furnaces (Darby I, 1709) and steam engine-driven blowers (Darby II, 1755). This allowed blast furnaces to be located away from forests and watercourses, and increased production capacity, which was one of the factors that sparked the Industrial Revolution (1771, blast furnaces were 9 meters tall and had a daily production of 4.5 tons). The development of blast furnace technology in England (hot air blower by JB Neilson, 1828; top gas recovery by Fall, 1832; regenerative furnace by Carapart, 1857) led to the development of the modern blast furnace style, in which blast furnace waste gas is burned in a regenerative furnace and used to heat the blast furnace blast (1872, blast furnaces were 24 meters tall and had a daily production of 65 tons).

Blast furnace technology then developed significantly from the late 19th century to the early 20th century, mainly in the United States, with improvements in coke strength, powdered ore sintering methods, mechanization of raw material hoisting and charging equipment, and increases in blast volume and pressure, and in 1897 the Duquesne blast furnace (30 meters high) recorded a daily production of 700 tons. In the 1930s, American blast furnaces reached a daily production of 1,000 tons (30 meters high, 8 meters hearth diameter).

After World War II, Japan saw significant developments in (1) ore pre-processing technologies, such as granulation of iron ore and sintering and pelletizing of powdered ore, (2) blast furnace operation technologies, such as oxygen-enriching the blast air, high temperatures, humidity control, fuel injection, and high pressure, and (3) management technologies based on analysis of reactions inside the blast furnace, as well as the increase in size of blast furnaces, with blast furnaces in the 1970s reaching heights of 30 to 35 meters, hearth diameters of 14 meters, and daily production of 10,000 to 12,000 tons. Blast furnaces have continued to get larger since then, and today, furnaces with heights of 100 meters and hearth diameters of 15 meters or more are mainstream.

[Hara Zenshiro]

Conditions inside the reactor and chemical reactions

In Japan, the conditions inside a blast furnace during operation have become much clearer through the rapid cooling and dismantling of the furnace. Simulations are also being carried out using supercomputers to recreate the inside of the furnace. The inside of the furnace is divided into five areas based on the physical state of the materials: the lumpy zone, the cohesive zone, the dripping zone, the raceway, and the basin. The physical changes occurring in each area and the chemical reactions of each component are as follows:

(1) Lump Zone: Iron ore and coke are charged in layers from above and move downwards while being heated by the gas rising between the particles. As the temperature of the ore rises, metallic iron is produced by the reduction of iron ore ( Fe2O3 , Fe3O4 ) by carbon monoxide (CO).

(2) Cohesive Zone: The gangue in the ore begins to form slag, and the absorption of carbon into metallic iron begins to produce low-melting-point cast iron, causing the iron ore to soften and melt. The hot gas coming from the dripping zone is distributed in the coke layer.

(3) Dripping Zone Molten cast iron (molten pig iron) and slag that have begun to form in the cohesive zone drip through the gaps between the coke lumps. The slag formation reaction occurs actively in this region. The coke in the center below the dripping zone is almost stationary (core), while the surrounding coke moves to the raceway (active coke zone).

(4) Raceway: This is the section immediately before the tuyere (blower hole). The high-temperature air blown in from the tuyere burns the coke, generating carbon monoxide gas and causing a violent swirling motion.

(5) Pond This is also clogged with coke lumps, but in the gaps between the coke lumps, molten slag accumulates on top and molten iron accumulates on the bottom. These are periodically discharged outside the furnace.

[Hara Zenshiro]

Blast Furnace Equipment

The blast furnace body is lined with firebricks and surrounded by an airtight shell structure made of steel plates to withstand the high temperatures inside the furnace, and the whole is supported by a steel tower structure. To extend the life of the refractory material, the furnace walls need to be cooled, and depending on the part of the furnace, water spraying, cooling water circulation, and cooling using the heat of evaporation of water are used. At the top of the blast furnace body, a top charging device is installed to charge raw materials into the furnace while keeping the top of the furnace airtight. Traditionally, a system combining multiple conical bells was common, but as furnaces have become larger, a system combining a seal valve and a rotating chute has also come into use to charge raw materials evenly into the furnace.

In the past, raw material weighing and hoisting equipment often involved lifting skips containing raw materials up a tilting tower and then tilting them at the top of the furnace to load the raw materials into the furnace. In large blast furnaces, belt conveyors with a low inclination angle are now used, allowing the cast floor to be wider.

Previously, reciprocating and centrifugal blowers were used to blow air to blast furnaces, but large blast furnaces use axial blowers, which can blow large volumes of air at high pressures. A hot stove consists of a gas combustion chamber and a heat regenerator chamber made of lattice-laid firebricks, and several units are installed in a set for each blast furnace. While one of the stoves is burned and the lattice-laid bricks in the heat regenerator are heated and stored in heat, air for the blast furnace is sent to the other hot stove (which has already stored heat), and the air is heated by the heat released from the high-temperature bricks and sent to the blast furnace. By switching this operation at regular intervals, it is possible to continuously blow high-temperature air to the blast furnace. Due to improvements in the material of the firebricks for the heat regenerator and the lattice-laid style, the temperature of the air blown to the blast furnace has reached 1,300°C.

The waste gas recovered at the top of the blast furnace contains a large amount of dust, so it is removed and purified using dust removers, electrostatic precipitators, and Venturi scrubbers.

The casthouse equipment for treating the molten iron and slag from the blast furnace basin includes the taphole, slag hole, taphole opener, mud guns for blocking, runners for guiding the molten iron and slag, transport cars for transporting the molten iron to the steelworks, and other equipment. Torpedo-shaped molten iron transport cars, which also mix the molten iron to make its temperature and composition uniform during transport, are now used, and can have a capacity of up to 600 tons.

In modern blast furnaces, the control of the amount of raw material charged, the amount of blast air, pressure, and temperature, as well as the operation of raw material weighing, charging equipment, hot stoves, and gas cleaning equipment, are all automated using various instruments and control devices. Development of instruments that constantly measure the top gas composition, furnace gas composition, temperature and pressure distribution, and molten iron temperature and composition has also progressed, and technology for controlling operation based on this information using pre-researched control models and computer calculations has also progressed.

[Hara Zenshiro]

[References] | Derby | Steel | Nielson
Early blast furnace (early 15th century)
©Shogakukan ">

Early blast furnace (early 15th century)

Conditions and temperature distribution inside the furnace during operation
©Shogakukan ">

Conditions and temperature distribution inside the furnace during operation

Chemical reactions of various components in a blast furnace
(1) Evaporation of water adhering to the raw material (2) Decomposition of water of crystallization in the raw material (3) Reduction of iron oxide in iron ore by carbon monoxide (indirect reduction) 3FeO + CO → 2FeO + CO Formation of intermediate iron oxide FeO + CO → 3FeO + CO Formation of intermediate iron oxide FeO + 4CO → 3Fe + 4CO Formation of metallic iron FeO + CO → Fe + CO Formation of metallic iron (4) Indirect reduction of iron oxide and formation of carbon monoxide by reaction of carbon dioxide and carbon (coke) (solution reaction) CO + C → 2CO (5) Reduction of iron oxide by carbon (coke) (direct reduction) FeO + C → Fe + CO (6) Reduction reaction of alloy elements (C, Si, Mn, P, S) and their absorption by metallic iron SiO + 2C → Si + 2CO, Si → Si in iron MnO + C → Mn + CO, Mn → Mn in iron PO + 5C → 2P + 5CO, P → P in iron C + metallic iron → pig iron (7) Desulfurization reaction (FeS) + (CaO) + C → (Fe) + (CaS) + CO (8) Decomposition of limestone CaCO → CaO + CO (9) Formation of slag Gangue in ore (SiO, AlO, MgO) + CaO → Slag (10) Combustion reaction of coke and fuel (heavy oil) injected into the tuyere 2C + O → 2CO 2CH + O → 2CO + H ©Shogakukan ">

Chemical reactions of various components in a blast furnace

Blast furnace structure and auxiliary equipment
©Shogakukan ">

Blast furnace structure and auxiliary equipment


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

溶鉱炉の別名。金属鉱石から脈石を分離して溶融状の金属を得る工程(金属溶融精錬)に用いる炉を溶鉱炉といい、なかでも鉄鉱石から銑鉄を生産する溶鉱炉は背が高いので高炉という。

[原善四郎]

高炉の歴史

高炉の起源は、中世にヨーロッパ中部で発達した立て型製鉄炉(ドイツ語でステュックオーフェンStückofen)にさかのぼる。立て型炉の上方から鉄鉱石と木炭を互層状に装入し、下方から空気を送って木炭を燃焼させると、発生した高温の一酸化炭素ガスが鉄鉱石中の酸化鉄から酸素を奪い(還元)、金属鉄に変える。ステュックオーフェンの産物は固形の鉄塊であった。15世紀初めにライン川下流地域のステュックオーフェンのなかに、水車駆動のふいごの送風力を増すことにより炉内温度を高くし、溶融状鋳鉄を生産するものが現れた。この炉では高温の金属鉄が炭素を吸収して融点の低い鋳鉄となった。また鉱石中の脈石(主としてケイ酸)が装入物に添加した石灰と結合して溶融スラグ(鉱滓(こうさい))となり、鋳鉄から分離して流出した。初期の高炉は鋳鉄砲と砲丸の生産を目的として発達したといわれる。

 16世紀の高炉は本体高さ6メートル、日産1トン程度であった。18世紀にイギリスで木炭のかわりに石炭コークスを高炉に用いることに成功し(ダービー1世、1709)、蒸気機関駆動の送風機を用いるようになって(同2世、1755)、高炉は森林や水流から離れて立地できるようになり、かつ生産能力も増して産業革命を起こす要因の一つとなった(1771年、高炉は高さ9メートル、日産4.5トン)。ついでイギリスにおける高炉技術の発達(ニールソンJ. B. Neilsonによる熱風送風、1828。フォールによる炉頂ガスの回収、1832。カラパールによる蓄熱炉、1857)により高炉廃ガスを蓄熱炉で燃焼し、高炉送風の加熱に利用する近代高炉の様式ができあがった(1872年、高炉は高さ24メートル、日産65トン)。

 高炉技術は次いで19世紀後半から20世紀前半にかけてアメリカを中心として、コークス強度の上昇、粉鉱焼結法、原料巻上げ・装入装置の機械化、送風量や圧力の増大など著しく発展し、1897年のデュケーヌ高炉(高さ30メートル)は日産700トンを記録した。1930年代のアメリカの高炉は日産1000トン(高さ30メートル、炉底直径8メートル)に達した。

 第二次世界大戦後、日本では、(1)鉄鉱石の整粒、粉鉱の焼結・ペレット化などの鉱石事前処理技術、(2)送風の酸素富化、高温、調湿、燃料吹込み、高圧化などの高炉操業技術、(3)高炉炉内反応の解析に基づく管理技術が著しく発達するとともに高炉の大型化が進み、1970年代の高炉は高さ30~35メートル、炉底直径14メートル、日産1万~1万2000トンに達した。その後も高炉の大型化が進み、現在では高さ100メートル、炉底直径が15メートル以上のものが主流となっている。

[原善四郎]

炉内状況と化学反応

日本で操業中の高炉を急冷、解体調査することによって操業中の炉内の状況がかなり明らかになってきた。また、スーパーコンピュータを用いて炉内を再現するシミュレーションも行われている。炉内は物質の物理的状態によって塊状帯、融着帯、滴下帯、レースウェー、湯溜(ゆだま)りの5領域に分かれており、各領域で生じている物理的変化と各成分の化学反応は次のとおりである。

(1)塊状帯 上方から互層状に装入された鉄鉱石とコークスとが、粒間を上昇してくる気体によって加熱されつつ下方へ移動する。鉱石の温度が上がると鉄鉱石Fe2O3、Fe3O4の一酸化炭素COによる還元で金属鉄も生じてくる。

(2)融着帯 鉱石中の脈石がスラグをつくり始め、また金属鉄中への炭素の吸収で低融点の鋳鉄ができ始め、鉄鉱石が軟化融着する。滴下帯からくる高温気体はコークス層で分配される。

(3)滴下帯 融着帯で生じ始めた溶融鋳鉄(溶銑)およびスラグがコークス塊のすきまを滴下する。スラグ生成反応はこの領域で盛んに生ずる。滴下帯の下方中心部のコークスはほとんど静止しており(炉心)、周辺のコークスはレースウェーへ移動する(活性コークス部)。

(4)レースウェー 羽口(はぐち)(送風口)の直前部分である。羽口から吹き込まれる高温空気によりコークスが燃焼して一酸化炭素ガスを生成しつつ激しい旋回運動をする。

(5)湯溜り ここもコークス塊で詰まっているが、コークス塊の間隙(かんげき)に、上層に溶融スラグ、下層に溶銑がたまる。これらは定期的に炉外に排出される。

[原善四郎]

高炉設備

高炉本体は、炉内の高温に耐えるために耐火れんがの内張りを鋼板製の気密 殻構造で囲んだもので、全体が鉄骨櫓(やぐら)構造で支持される。耐火物の寿命を長くするには炉壁を冷却する必要があり、本体の部位に応じて散水、冷却水の循環、水の蒸発熱利用の冷却などが行われる。高炉本体の頂部には、炉頂の気密を保ちつつ原料を炉内へ装入するための炉頂装入装置が設けられる。従来は複数個の円錐(えんすい)形ベルを組み合わせた方式が多かったが、炉の大型化に伴って炉内へ均等に原料を装入するためシール弁と旋回シュートとを組み合わせた方式も用いられるようになった。

 原料秤量(ひょうりょう)・巻揚げ設備として、かつては原料入りのスキップを傾斜塔で引き上げ、炉頂で傾倒させて原料を炉に装入する方式が多かった。大型高炉では低傾斜角のベルトコンベヤーが用いられ、鋳床設備を広くすることができるようになった。

 高炉の送風には、以前には往復式や遠心式の送風機が用いられたが、大型高炉では大量・高圧の送風が可能な軸流式送風機が用いられている。熱風炉はガス燃焼室および耐火れんがを格子積みした蓄熱室からなり、高炉本体1基当りに複数基を一組みとして設置する。その1基に高炉廃ガスを通して燃焼させ、蓄熱室の格子積みれんがを加熱、蓄熱している間に、他の熱風炉(あらかじめ蓄熱してある)に高炉送風用の空気を送り、高温れんがからの放熱によって熱風に加熱して高炉に送風する。この操作を一定時間ごとに切り換えることにより高炉に高温空気を連続的に送風することができる。蓄熱炉用の耐火れんがの材質および格子積み様式の改良により、高炉の送風温度は1300℃に及んでいる。

 高炉の炉頂で回収される廃ガスは多量の粉塵(ふんじん)を含んでいるので、脱塵機、電気集塵機、ベンチュリー・スクラバなどで除塵し、清浄にする。

 高炉湯溜りから出る溶銑・溶滓を処置する鋳床設備は、出銑口、出滓口、出銑口開孔機、閉塞(へいそく)用のマッド・ガン、溶銑・溶滓を導く樋(とい)、溶銑を製鋼工場へ運ぶ運搬車、その他の設備を含む。溶銑運搬車には、運搬中に溶銑の温度、成分の均一化を図る混合作用をも行う魚雷形のもの(トーピード・カー)も用いられるようになり、容量600トンに及んでいる。

 現代の高炉においては、原料装入量、送風量、圧力、温度の制御や、原料秤量、装入装置、熱風炉、ガス清浄装置の運転はすべて各種計器と制御装置により自動化されている。炉頂ガス成分、炉内ガス成分、温度・圧力分布、溶銑温度・成分を刻々測定する計器の開発も進み、さらにそれらの情報に基づいて、あらかじめ研究された制御モデルとコンピュータによる計算で操業制御を行う技術も進歩している。

[原善四郎]

[参照項目] | ダービー | 鉄鋼 | ニールソン
初期の高炉(15世紀初めころ)
©Shogakukan">

初期の高炉(15世紀初めころ)

操業中の炉内状況と温度分布
©Shogakukan">

操業中の炉内状況と温度分布

高炉炉内における諸成分の化学反応
(1)原料に付着した水分の蒸発(2)原料中結晶水の分解(3)鉄鉱石酸化鉄の一酸化炭素による還元(間接還元)  3FeO+CO→2FeO+CO 中間酸化鉄の生成  FeO+CO→3FeO+CO 中間酸化鉄の生成  FeO+4CO→3Fe+4CO 金属鉄の生成  FeO+CO→Fe+CO 金属鉄の生成(4)酸化鉄の間接還元および炭酸ガスと炭素(コークス)の反応による一酸化炭素の生成(ソリューション反応)  CO+C→2CO(5)酸化鉄の炭素(コークス)による還元(直接還元)  FeO+C→Fe+CO(6)合金元素(C、Si、Mn、P、S)の還元反応とそれらの金属鉄への吸収  SiO+2C→Si+2CO、Si→鉄中Si  MnO+C→Mn+CO、Mn→鉄中Mn  PO+5C→2P+5CO、P→鉄中P  C+金属鉄→銑鉄(7)脱硫反応  〔FeS〕+(CaO)+C→〔Fe〕+(CaS)+CO(8)石灰石の分解  CaCO→CaO+CO(9)スラグの生成  鉱石中脈石(SiO、AlO、MgO)+CaO→スラグ(10)コークスおよび羽口吹込み燃料(重油)の燃焼反応  2C+O→2CO  2CH+O→2CO+H©Shogakukan">

高炉炉内における諸成分の化学反応

高炉の構造と付帯設備
©Shogakukan">

高炉の構造と付帯設備


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Huang-Lao (English spelling)

>>:  Sea route - Kouro (English spelling)

Recommend

Augusta Windericum - Augusta Windericum

...A city in Bavaria, southern Germany. Populatio...

orthoselection

… Some scholars cite a directional change in the ...

Ilex holly (English spelling) Bird-lime holly

An evergreen tall tree of the family Ilex (APG cl...

Wet spinning

…The process of twisting short fibers such as cot...

Upper level weather chart - upper level weather chart

A weather chart used to analyze atmospheric condi...

Malipiero

Italian composer. He studied in his hometown of Ve...

intercumulus liquid

…This is the result of crystals that have crystal...

Genus Actinostrobus

...The subfamily Cupressaceae includes species su...

Autumn Song - Akinokyoku

Koto music Recruitment Composed by Yoshizawa Keng...

Sorbon, R.de (English spelling) SorbonRde

…It was founded in 1257 by Robert de Sorbon, a pr...

Closed Country - Sakoku

Generally speaking, the term "sakoku" r...

Ashio Sengen

…From 1662 (Kanbun 2) for six years, 300 tons of ...

Kado - Kado

The former town area in the center of Mitane Town,...

Swaddling

…Children's clothes began to be distinguished...

Brandt, G.

…Because this mineral is difficult to process, ar...