Distance - mile

Japanese: 距離 - きょり
Distance - mile

In mathematics, distance is defined in various cases, as follows: (1) Distance between two points The shortest line connecting two points A and B is the line segment AB, and its length is the distance between two points A and B. (2) Distance between a point and a line The shortest line connecting point A and any point on line l is the perpendicular line AH drawn from A to l, and its length is called the distance between A and l. (3) Distance between a point and a plane The shortest line connecting point A and any point on plane α is the perpendicular line AH drawn from A to α, and its length is called the distance between A and α. (4) Distance between two parallel lines For two parallel lines l and m, if the points A and B where a line perpendicular to both intersects with l and m are A and B, then the length of the line segment AB is constant wherever the common perpendicular line is taken. This length is called the distance between the two parallel lines l and m. (5) Distance between two parallel planes If the points A and B where a line perpendicular to both planes α and β intersect are A and B, then the length of the line segment AB is called the distance between the two planes α and β. (6) Distance between two lines in a twisted position If the two lines are p and q, and an arbitrary point P is taken on p, and an arbitrary point Q is taken on q, then the shortest line connecting P and Q is the line segment PQ that is perpendicular to both p and q, and this is called the distance between the two lines p and q. In this case, there is only one line PQ that is perpendicular to both p and q, and it is called the common perpendicular line of p and q.

[Minoru Kurita]

Coordinates and distances

(1) On a plane, when the Cartesian coordinates of two points A and B are (a 1 , a 2 ) and (b 1 , b 2 ), the distance is,

In space, if the Cartesian coordinates of two points A and B are (a 1 , a 2 , a 3 ) and (b 1 , b 2 , b 3 ), then the distance is

(2) In Cartesian coordinates, if the coordinates of point P are ( x1 , y1 ) and the equation of line p is ax+by+c=0, then the distance PH between P and p is,

In Cartesian coordinates, if the coordinates of point P are (x 1 , y 1 , z 1 ) and the equation of plane α is ax + by + cz + d = 0, then the distance PH between P and α is:

It is.

[Minoru Kurita]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

数学では、以下のようないろいろな場合に分けて距離を定義する。(1)2点間の距離 2点A、Bを結ぶ線のなかでもっとも短いのは線分ABで、その長さが2点A、B間の距離である。(2)点と直線の距離 点Aと直線l上の任意の点とを結ぶ線のなかでもっとも短いのはAからlへ下ろした垂線AHで、その長さをAとlの距離という。(3)点と平面の距離 点Aと平面α上の任意の点とを結ぶ線のなかでもっとも短いのは、Aからαへ下ろした垂線AHで、その長さをAとαの距離という。(4)平行2直線の距離 平行な2直線l、mについて、両方に垂直な直線がl、mと交わる点をA、Bとすると、線分ABの長さは共通の垂線をどこにとっても一定である。この長さを平行2直線l、mの距離という。(5)平行2平面の距離 平行な2平面α、βについて、両方に垂直な直線がα、βと交わる点をA、Bとするとき、線分ABの長さを2平面α、βの距離という。(6)ねじれの位置にある2直線の距離 2直線をp、qとし、p上に任意の点P、q上に任意の点Qをとるとき、P、Qを結ぶ線のなかでもっとも短いのは、p、qの両方に垂直な線分PQで、これを2直線p、qの距離という。このときのp、qの両方に直交する直線PQはただ一つあって、p、qの共通垂線という。

[栗田 稔]

座標と距離

(1)平面上で、2点A、Bの直交座標が(a1, a2), (b1, b2)のとき、距離は、

空間で、2点A、Bの直交座標が(a1, a2, a3), (b1, b2, b3)のとき、距離は、

(2)直交座標で、点Pの座標が(x1, y1)、直線pの方程式がax+by+c=0のとき、Pとpの距離PHは、

直交座標で、点Pの座標が(x1, y1, z1)、平面αの方程式がax+by+cz+d=0のとき、Pとαの距離PHは、

である。

[栗田 稔]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Kyoriku - Kyoriku

>>:  Torpedo boat - Gyoraitei (English spelling) motor torpedo boat

Recommend

arms exports

It refers to the sale of weapons to foreign countr...

Aktau [mountain] - Aktau

...The lowest point is 132m below sea level in th...

Ilhéus (English spelling)

A city in the southeastern part of Bahia State, on...

Calissimi, G.

…First, the oratorio in Latin and the oratorio in...

Akita Minato

…A port town in Akita County, Dewa Province (Akit...

The Cream

…(2) Blues rock In the mid-1960s, white guitarist...

Osaka Bank

A regional bank. Founded in 1950 as Osaka Real Est...

Footstool - Footstool

〘Noun〙① = ashiba (footing) ② ※Konjaku (around 1120...

Tohoku Shinkansen

This is the common name for the Shinkansen line b...

Divine nation ideology - Shinkokushisou

The idea of ​​Japan being a divine country. This ...

Minsky, Marvin

Born: August 9, 1927, New York, New York [Died] Ja...

Curtain - I

〘 noun 〙 A hanging curtain that is stretched out i...

Stable God - Umayagami

A general term for gods enshrined in stables and g...

Auburn System - Auburn System

…In Pennsylvania, the Western Penal Colony was op...

King's Men

…His success can be seen from the fact that he bo...