Limit - limit

Japanese: 極限 - きょくげん
Limit - limit

In a sequence of numbers a 1 , a 2 ,……, a n ,……, if the index n of a n becomes infinitesimally large and approaches a certain value A, then a n is said to converge to A, and A is called the limit value of this sequence.

Also, when n is increased, if a n becomes infinitely large, it is said that a n diverges to positive infinity,

When n is increased, if a n is negative and its absolute value becomes infinitely large, a n is said to diverge to negative infinity,

When a n converges to a limit value or diverges to positive or negative infinity, it is said to have a limit; when it does not, it is said to have no limit. The limit of a sequence is thus a conceptual term for thinking about what a n will be like when n becomes infinitely large in a sequence.

[Osamu Takenouchi]

Limit of a function

Suppose the function f(x) is defined near x = a (it does not have to be defined at x = a). In this case, the limit problem is what happens to the value of f(x) as x approaches a infinitesimally close to a.

(1) f(x) approaches a certain fixed value b infinitely. At this time, f(x) is said to converge to b, and b is called the limit value of f(x) when x approaches a.

This can be written as (1) in the figure .

(2) f(x) becomes larger than any value. At this point, f(x) is said to diverge to positive infinity,

( Figure (2)). When f(x) takes a negative value and its absolute value becomes infinitely large, f(x) is said to diverge to negative infinity. The above is the case where there is a limit. Next, we consider the case where there is no limit.

(3) f(x) is bounded (a function is said to be bounded when its value does not exceed a certain number and does not become smaller than a certain number), but it has no limit ((3) in the figure ).

(4) f(x) is unbounded and has no limit ((4) in the figure ).

In addition, when there is no limit, there may be a limit when looking at only one side of a ((5) and (6) in the figure ). When there is a limit value when approaching from the left side, this is called the left-side limit,

Similarly, the right-side limit value

is determined.

[Osamu Takenouchi]

[Reference] | Convergence | Sequence
Limit (limit of a function) [Diagram]
©Shogakukan ">

Limit (limit of a function) [Diagram]


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

数列a1, a2,……, an,……において、添数のnが限りなく大きくなるとき、anの値がある値Aに限りなく近づくならば、anはAに収束するといい、Aをこの数列の極限値limit valueといって、

と書く。また、nを大きくするとき、anが限りなく大きくなるならば、anは正の無限大に発散するといい、

と書く。nを大きくするとき、anが負でその絶対値が限りなく大きくなるならば、anは負の無限大に発散するといい、

と書く。anがある極限値に収束する場合、あるいは正または負の無限大に発散するとき、極限があるといい、そうでないとき、極限がないという。数列の極限はこのように、数列においてnが限りなく大きくなるとき、anがどのようになるかを考えるための概念的な用語である。

[竹之内脩]

関数の極限

関数f(x)はx=aの近くで定義されているとする(x=aでは定義されていなくてもかまわない)。このときxが限りなくaに近づくときf(x)の値がどのようになっていくかが極限の問題である。

(1) f(x)はある定まった値bに限りなく近づく。このとき、f(x)はbに収束するといい、bを、xがaに近づいたときのf(x)の極限値といって、

と書く(の(1))。

(2) f(x)はいかなる値をも超えて大きくなっていく。このときf(x)は正の無限大に発散するといって、

と書く(の(2))。f(x)が負の値をとって、その絶対値が限りなく大きくなるとき、f(x)は負の無限大に発散するという。以上が極限のある場合である。次に極限のない場合を考える。

(3) f(x)は有界(関数の値が、ある数を超えず、また、ある数より小さくならないとき、その関数を有界であるという)であるが極限のない場合(の(3))。

(4) f(x)は有界でなく極限のない場合(の(4))。

 なお極限のない場合、aの片側だけをみると極限のある場合もある(の(5)・(6))。左側から近づいたときの極限値があるとき、これを左側極限値といい、

で表す。同様に、右側極限値

が定められる。

[竹之内脩]

[参照項目] | 収束 | 数列
極限(関数の極限)〔図〕
©Shogakukan">

極限(関数の極限)〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Limit design method

>>:  Polar Circle

Recommend

Flutter - Flutter (English spelling)

Vibrations that occur in the wings of an airplane...

National Diet Library Classification

...The Library of Congress, which had a collectio...

Abe Regina Chelorm - Abe Regina Chelorm

...Etymologically, it is the same as hymn, but wh...

False Dmitry - False Dmitry (English spelling) Lzhedmitrii

A man who pretended to be Dmitry (1582-91), the yo...

Padang - Padang (English spelling)

A port city on the west coast of central Sumatra ...

Siles Zuazo, H. (English) SilesZuazoH

…Official name = Republic of BoliviaRepública de ...

Rudjer Josif Bošković

1711‐87 Italian mathematician and natural philosop...

Masatsune Asukai

[Born] Kaō 2 (1170) [Died] March 11, 1221 (Jōkyū 3...

Holmes, A.

…The total area of ​​the ocean floor around the w...

Kimul - Kimul

…The capital is Cardiff. The name of the city com...

Penetrant testing

A type of non-destructive testing. A colored liqui...

Hiccups - hiccups

Hiccups are a condition in which the diaphragm spa...

Student Union - Gakuren

A general term for university diving club organiza...

Louis XIV - Louis

King of France (reigned 1643-1715). Son of Louis X...

Kamieński, M.

…In these times, Polish national opera, national ...