Curvilinear coordinates

Japanese: 曲線座標 - きょくせんざひょう(英語表記)curvilinear coordinates
Curvilinear coordinates
Coordinates based on a family of curves. Let the Cartesian coordinates in three-dimensional space be ( x , y , z ), and the three functions be ξ1 = f1 ( x , y , z ), ξ2 = f2 ( x , y , z ), and ξ3 = f3 ( x , y , z ). Now , let c1 , c2 , and c3 be constants, respectively, and let ξ1 = c1 , ξ2 = c2 , and ξ3 = c3 , all of which represent curved surfaces. By changing the values ​​of c1 , c2 , and c3 , three types of surfaces can be obtained. When one surface is taken from each of these three groups of surfaces, they intersect at a single point P. Conversely, there is a unique set of surfaces ξ1 = c1 , ξ2 = c2 , ξ3 = c3 that pass through any point in space. In this way, there is a one - to-one correspondence between each point ( x , y , z ) in space and the set of real numbers ( ξ1 , ξ2 , ξ3 ). In other words, the set of real numbers ( ξ1 , ξ2 , ξ3 ) can be considered as the coordinates that define the point ( x , y , z ) in space. These ( ξ1 , ξ2 , ξ3 ) are called the curvilinear coordinates around point P in three-dimensional space. The necessary and sufficient condition for the three functions f1 ( x , y , z ), f2 ( x , y , z ), and f3 ( x , y , z ) to define the curvilinear coordinates ( ξ1 , ξ2 , ξ3 ) is that the Jacobian (function determinant) is not 0. The same is true for two-dimensional and four-dimensional or higher spaces.

Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information

Japanese:
曲線族による座標。3次元空間の直交座標を (xyz) とし,3つの関数を ξ1f1(xyz), ξ2f2(xyz), ξ3f3(xyz) とする。いま c1c2c3 をそれぞれ定数とし,ξ1c1, ξ2c2, ξ3c3 とおけば,これらはすべて曲面を表わす。ここで c1c2c3 の値を変化させれば,3種の曲面群が得られる。この3種の曲面群のそれぞれから,曲面を1つずつとったとき,それらが1点Pで交わり,また逆に,空間の任意の1点を通ってただ1通りの曲面の組 ξ1c1, ξ2c2, ξ3c3 があるとする。こう考えれば,空間の各点 (xyz) と実数の組 (ξ1,ξ2,ξ3) とが一対一に対応することになる。すなわち,実数の組 (ξ1,ξ2,ξ3) を,空間の点 (xyz) を定める座標とみなすことができる。この (ξ1,ξ2,ξ3) を,3次元空間の点Pのまわりの曲線座標という。3つの関数 f1(xyz) ,f2(xyz) ,f3(xyz) が,曲線座標 (ξ1,ξ2,ξ3) を定めるための必要十分条件は,ヤコビアン (関数行列式) が0にならないことである。2次元や4次元以上の空間についても,同様である。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

<<:  Tamakawako - Gyokusenshi

>>:  Curve Salvation - Kyokusenkyukoku

Recommend

Bogomil

...A Christian heresy that was influential in the...

"Dutch Architecture" - Dutch Architecture

...Dutch architect. Born in Purmerend. ... *Some ...

Wine gallon

...This definition was established by the Weights...

Oda Prefecture - Oda

...The following year, Katsuyama Domain was renam...

Izu Province Islands Products Exchange - Izu no Kuni Tsukishimajima Sanbutsukaisho

…In 1794 (Kansei 6), the shogunate also took issu...

Kyoto Patrol Team - Kyoto Patrol Team

In 1864, the Edo Shogunate organized the group to ...

Alpha Ridge

…The names of the landforms and the depths of the...

Mount Kanmuri - Mount Kanmuri

(Ichikikushikino City, Kagoshima Prefecture) A tou...

Neurogenic muscular atrophy

… All skeletal muscles are controlled by motor ne...

Filippo Brunelleschi

Italian architect and sculptor. His real name was...

niche pre-emption model

...Toshiro Uchida derived that this relationship ...

Hojuji Temple

This Buddhist temple is considered one of the fiv...

underground publishing

The underground press in the former Soviet Union. ...

Columnar crystallite

When molten metal is poured into a mold, crystal n...

Carpenter - Daiku

A craftsman of wooden architecture. In the 5th ce...