Functional analysis

Japanese: 関数解析 - かんすうかいせき
Functional analysis

At the beginning of the 20th century, Hilbert created the concept of Hilbert spaces from his research on integral equations, paving the way for the abstraction of analysis. Furthermore, in the 1920s, Banach established functional analysis, also known as topological analysis, by focusing on the topological and algebraic aspects of analysis. Functional analysis has recently been used as an important method in the theory of partial differential equations, probability theory, and numerical analysis, and is actively studied in these fields as well. The main research subjects of functional analysis are Banach spaces and continuous linear operators on them. A norm is defined in Banach spaces, which is an extension of the usual absolute value in linear spaces, and the Banach spaces are complete with respect to convergence introduced by the norm. Functional analysis is particularly important in the following respects:

(1) A theory based on the completeness of Banach spaces, which provides a unified theory of many existence theorems in analysis.

(2) Introduction of the relativity between Banach spaces and their conjugate spaces, and the weak topology, which has recently played an important role in the theory of generalized functions.

(3) The theory of spectra as an abstraction of integral equation theory, in particular as an extension of the eigenvalue problem of matrices for completely continuous operators.

(4) It was well known that solutions to equations such as heat conduction and wave motion form semigroups, but conversely, the generation theorems of semigroups can be used to show the existence of solutions to partial differential equations. At the heart of this is the Hille-Yoshida theorem. The theory of semigroups has also been extended to nonlinear operators. This theory was initiated by Yukio Takamura and Toshio Kato, and marked the beginning of research into nonlinear function analysis.

[Haruo Sunouchi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

20世紀の初め、ヒルベルトは、積分方程式の研究からヒルベルト空間の概念をつくり、解析学を抽象化する道を開いた。さらに1920年代にバナッハが、解析学の位相・代数的な面に注目して確立したのが関数解析である。位相解析ともよばれる。関数解析は最近では偏微分方程式論、確率論、数値解析などでも重要な手法として用いられており、その関連においても盛んに研究されている。関数解析のおもな研究対象は、バナッハ空間と、その上の連続な線形作用素である。バナッハ空間は、線形空間に普通の絶対値の拡張であるノルムが定義され、そのノルムから導入された収束に関し完備になっている。関数解析はとくに次の点で重要である。

(1)バナッハ空間の完備性に基づく理論。これは解析学における多くの存在定理に統一的な理論を与える。

(2)バナッハ空間と、その共役空間との相対性、弱位相の導入。これは最近では超関数の理論でも重要な役割を果たしている。

(3)積分方程式論の抽象化として、とくに完全連続作用素の、行列の固有値問題の拡張としてのスペクトルの理論。

(4)熱伝導や波動方程式の解が半群をつくることはよく知られていたが、逆に半群の生成定理から、偏微分方程式の解の存在が示される。その中心にヒレ‐吉田の定理がある。半群の理論は非線形の作用素にも拡張されている。これは、高村幸男、加藤敏夫により始められた理論であり、非線形関数解析の研究の端緒となった。

[洲之内治男]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Functional Language

>>:  Function - Kansuu

Recommend

Freshfield, Douglas William

Born: April 27, 1845, London [died] 9 February 193...

Mosquito canopy

…[Kazuko Koizumi] In Europe, people would put up ...

Thurstone, LL (English spelling) ThurstoneLL

...CE Spearman observed a correlation structure i...

Ogata Dohaku

...A painter from the mid-Edo period. His given n...

Shinmachi [town] - Shinmachi

A former town in Tano District, southern Gunma Pre...

Leather boat

A boat with bark or animal hide stretched over a ...

Grilled quail - Uzurayaki

〘Noun〙① A type of rice cake. A manju (bun) filled ...

Ibn Muljam (English spelling)

In December 656, he defeated the combined forces ...

Unitarian - Yunitterian (English spelling) Unitarian

It refers to a sect that opposes the belief in th...

Long live Akita

...It is said that Manzai was performed at the Im...

cough

Concept/Mechanism: Cough is one of the most common...

Galois, EM - Galois

…An insect belonging to the family Galloidea (ill...

Husson, J.

…French novelist and art critic. His real name wa...

Van Than (English spelling)

This refers to the class of intellectuals in premo...

Mortonagrion selenion (English spelling) Mortonagrion selenion

... Mortonagrion hirosei (discovered in Hinuma, I...