Diffraction grating

Japanese: 回折格子 - かいせつこうし
Diffraction grating

A grating is an optical element that consists of many parallel slits arranged at equal intervals. It is used to disperse light according to wavelength and obtain a spectrum. Light is diffracted by each slit, generating waves that bend horizontally. As a result of interference between light waves diffracted by different slits, light of a given wavelength propagates strongly only in a specific direction. In other words, when the difference in optical path length between light waves diffracted by adjacent slits is an integer ( m ) times the wavelength of the light, strong diffracted light is produced. This m is called the order of the spectrum produced by the diffraction grating. There are transmission and reflection types. The reflection type also has a plane grating, where the reflecting surface is a flat surface, and a concave grating, where the reflecting surface is a concave spherical surface. To make a diffraction grating, a diamond-edged ruling engine is used to precisely scribe lines at equal intervals on a mirror surface that has been polished to a flat or concave surface. Depending on the choice of blade, stepped cuts can also be obtained, and the spectral strength can be concentrated to a certain order, increasing efficiency. A grating designed in this way is called a blazed grating. A grating with stepped edges designed for infrared light can be considered as a finer version of a stepped grating, and is called an echelette grating. The spacing between the rulings is usually on the order of the wavelength of the desired light, and is used to obtain a first or second order spectrum, but sometimes the rulings are spaced farther apart to obtain a higher order spectrum (echelle grating).

Figure A shows a transmission type diffraction grating, and Figure B shows a reflection type diffraction grating. In Figure B, the relationship between the wavelength and angle of the mth order spectral line is
m λ= d (sinβ-sinα)
The angle between the normal N of the grating and the normal n of the reflecting surface of each slit is called the blazed angle. In the Littrow method (where the diffracted light is returned to the incident light), the wavelength at which the first-order spectrum is strongest is given by
λ= 2d sinθ
This wavelength is called the blazed wavelength.

The limit at which two closely spaced spectral lines (wavelength difference Δ λ) can be separated and observed is called the resolution, and is expressed as λ/ Δ λ. The resolution of a diffraction grating is given by the product of the total number of slits and the order of the spectrum, but in reality, the value is somewhat lower due to irregularities in the ruling or defects in the optical system. If there are irregularities in the ruling, false spectral lines (ghosts) appear around the main lines, causing a decrease in resolution.

It is possible to create a diffraction grating by printing interference fringes obtained by laser light without using a mechanical ruler. This is called a holographic grating. In this case, the grating lines are not necessarily straight lines, but can be curved, and various methods have been devised to utilize this to reduce image aberration. With concave diffraction gratings, it is now possible to minimize aberration by correcting the shape and spacing of each slit using holographic grating manufacturing technology.

[Tatsutake Onaka and Masahide Ito]

"Introduction to Diffractive Optical Elements" edited by the Japan Society of Applied Physics, the Optical Society of Japan, and the Optical Design Research Group (1997, Optronics Co., Ltd.)

[Reference] | Concave grating | Interference | Spectrum
Principle of transmission diffraction grating (Fig. A)
©Shogakukan ">

Principle of transmission diffraction grating (Fig. A)

Principle of reflection type diffraction grating (Fig. B)
©Shogakukan ">

Principle of reflection type diffraction grating (Fig. B)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

多数のスリット(すきま)を平行、等間隔に並べた光学素子で、グレーティングgratingともいう。光を波長に従って分散し、スペクトルを得るのに用いられる。光は各スリットによって回折し、横方向へ曲がって進む波を生ずる。異なるスリットによって回折してきた光波が干渉する結果、与えられた波長の光は特定の方向にのみ強く伝搬する。すなわち、隣り合ったスリットで回折した光波の間に光の波長の整数(m)倍の光路長の差があるとき、強い回折光ができる。このmを回折格子によるスペクトルの次数という。透過型と反射型とがある。反射型にも、反射面が平面である平面格子と、凹球面である凹面格子がある。回折格子をつくるには、普通、平面または凹面に研磨された鏡面に、ダイヤモンドの刃をもった刻線機械(ルーリング・エンジン)で精密に等間隔に刻線する。刃の選び方によって、階段的な切り口の刻線も得られ、スペクトルの強さをある次数に集めて、効率を高めることができる。このようにくふうされたものをブレーズド格子という。また、赤外線用につくられた階段状の切り口をもった格子は、階段格子の目を細かくしたものとも考えられ、エシュレット格子とよばれる。刻線の間隔は、普通、目的の光の波長の程度で、一次または二次のスペクトルを得るのに用いられるが、ときには刻線間隔を広くとり、そのかわり高い次数のスペクトルを得るもの(エシェル格子)も用いられている。

 図Aは透過型回折格子、図Bは反射型回折格子。図Bではm次のスペクトル線の波長と角度の関係は、
  mλ=d(sinβ-sinα)
で与えられる。格子の法線Nと、各スリットの反射面の法線nとの間の角をブレーズド角といい、リトロー方式(回折光が入射光のほうに返ってくる使い方)では、一次のスペクトルがもっとも強く得られる波長は、
  λ=2dsinθ
で与えられる。この波長をブレーズド波長という。

 波長の接近した2本のスペクトル線(波長差Δλ)が分離して観測できる限界を分解能といい、λ/Δλで表される。回折格子の分解能はスリットの総数とスペクトルの次数の積で与えられるが、実際には刻線の不整や光学系の不良によって多少低い値となる。刻線に不整がある場合には、本線の周りに偽のスペクトル線(ゴースト)が現れ、分解能低下の原因となる。

 機械的刻線器を用いず、レーザー光によって得られる干渉縞(かんしょうじま)を焼き付けて回折格子をつくることができる。これはホログラフィックグレーティングとよばれる。この場合、格子線は直線になるとは限らず、曲線になる場合もあり、これを利用して結像の収差を小さくする方法もさまざまにくふうされている。凹面回折格子では、ホログラフィックグレーティング製作技術を用いて1本1本のスリットの形や間隔に補正を加え、収差を小さく抑えることが可能になった。

[尾中龍猛・伊藤雅英]

『(社)応用物理学会・日本光学会・光設計研究グループ監修『回折光学素子入門』(1997・オプトロニクス社)』

[参照項目] | 凹面格子 | 干渉 | スペクトル
透過型回折格子の原理〔図A〕
©Shogakukan">

透過型回折格子の原理〔図A〕

反射型回折格子の原理〔図B〕
©Shogakukan">

反射型回折格子の原理〔図B〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Kayseri (English spelling)

>>:  Diffraction - Diffraction

Recommend

Inukai [Town] - Inukai

An old town in Ono County, occupying the middle re...

Ototake Iwazo

Educator. Born in Mie Prefecture. Graduated from ...

Jaimini - Jaimini (English spelling)

He established the Mimamsa school, one of the six...

Canning, George

Born: April 11, 1770, London [Died] August 8, 1827...

Oryu - Oryu

…It was also believed that the star Bishu brought...

Bonseki - Bonseki

This is a traditional art unique to Japan that cr...

Hazara - Hazara (English spelling)

A Mongolian ethnic group living in the mountainous...

Everlady mechanical pencil - Everlady mechanical pencil

...One of the manufacturers at that time was Toku...

Hojo Yasutoki

Year of death: 15th June 1242 (14th July 1242) Yea...

World Bank - Sekaiginko (English spelling) World Bank

An international organization under the United Nat...

Horse New Year's Eve - Umanoto Toshikoshi

...It refers to the period from the evening of Ja...

《Old Records and Miscellany》

...A collection of historical materials related t...

Kikuzuki Production

…During the Bunka and Bunsei eras, even big names...

holy basil

…A perennial plant that is worshipped as a sacred...

Anal gland

A pair of secretory glands found in mammals, inclu...