...However, it is often difficult to find a solution to nonlinear equations, and research into nonlinear waves that follow these equations made significant progress in the second half of the 20th century, when it became easy to solve nonlinear equations numerically using electronic computers. In 1966, NJ Zabski and MD Kruskal conducted numerical experiments using a computer and found that several sharp solitary waves appeared in waves that satisfied the Korteweg-de Vries equation, and that they moved almost independently of each other, and that when they collided, they passed through each other and continued on their way. They named such solitary waves solitons. It was later found that solitons also occurred in other nonlinear wave equations. ... From [Elementary Excitation]… In the elementary excitations mentioned so far, the interaction between states with different momentum is weak, but in some cases, the interaction is strong and it is possible for the states to be localized in space through the resulting nonlinearity. Such elementary excitations are called solitons. [Hidetoshi Fukuyama] … From [Nonlinear Dynamics]...This is, of course, an integrable system, and the eigenmodes are obtained by Fourier decomposition of the displacement of each oscillator, and furthermore, it is expressed as a linear wave equation by continuum approximation of the wave numbers. On the other hand, the KdV (Kortweg-de Vries) equation has long been known as a typical example of one-dimensional nonlinear waves, and its localized traveling wave solution was discovered at the end of the 1960s and named soliton. Toda showed that if (4) is approximated by a continuum without expanding it, it becomes the KdV equation, and he also discovered something equivalent to a soliton among the elementary solutions of (4). ... *Some of the terminology explanations that mention "soliton" are listed below. Source | Heibonsha World Encyclopedia 2nd Edition | Information |
…しかし非線形の方程式は一般に解を求めることが困難な場合が多く,これらの方程式に従う非線形波動の研究が著しく発展したのは,20世紀の後半,電子計算機で非線形方程式を数値的に解くことが容易にできるようになってからのことである。 1966年にN.J.ザブスキーとM.D.クラスカルは計算機による数値実験の結果,コルテベーグ=ド・フリース方程式を満たす波の中にいくつかの鋭い孤立波が現れ,それらが互いにほぼ独立に運動することや,衝突すると互いに相手の中を通り抜けてそのまま進行を続けることなどを見いだし,このような孤立波をソリトンsolitonと名付けた。その後,他の非線形波動方程式においてもソリトンが発生することがわかった。… 【素励起】より… 今まで例として述べた素励起では,異なる運動量をもつ状態の間の相互作用は弱いが,場合によっては,その相互作用が強く,それに起因する非線形性を通して空間に局在した例も可能である。このような素励起はソリトンsolitonと呼ばれる。【福山 秀敏】。… 【非線形力学】より…これはもちろん可積分系であり,各振動子の変位のフーリエ分解によって固有モードが得られ,さらに波数の連続体近似によって線形波動方程式,で表されることになる。 一方,一次元非線形波動を示す典型として古くからKdV(コルトベーグ=ド・フリース)方程式,が知られていたが,やはり1960年代の終りにその局在進行波解が発見され,ソリトンsolitonと名づけられた。戸田は(4)を展開せずに連続体近似するとそれがKdV方程式となることを示し,また(4)の素解の中にソリトンに相当するものを発見した。… ※「soliton」について言及している用語解説の一部を掲載しています。 出典|株式会社平凡社世界大百科事典 第2版について | 情報 |
...The principles of the Olympic movement that pu...
… In the 1960s, Pan-Slavism was born in Russia, p...
...In the above explanation, the blade and handle...
...A cutting tool used to drill holes in rock. Fo...
The word means "an erotic banquet," but ...
A district in the southern part of Otsu City, Shi...
Dynamic Load All the way ⇔Dead load. Source: Abou...
...This book is considered to be of great value a...
… [Kunitoshi Mizuno] [Mass Communication] Britain...
…[Tobe Ginsaku] (3) Jiuta and Koto Music There we...
...Its natural enemy is the Iriomote wildcat. Oth...
[1][1] The wife of Emperor Xuanzong of the Tang Dy...
[What kind of disease is it?] Diseases in which ph...
A teaching organization plan introduced in 1919 b...
This imperial decree was promulgated on October 1...