Riemannian geometry refers to the differential geometry of Riemannian manifolds, that is, differentiable manifolds with a Riemannian metric. A differentiable map that associates an inner product with a tangent space at each point on a differentiable manifold is called a Riemannian metric. Since each tangent space has the structure of a Euclidean space due to the inner product, Riemannian geometry can be said to be a geometry that has a first-order approximation to Euclidean geometry. Since a vector space with an inner product (i.e., Euclidean space) is the simplest Riemannian manifold, Riemannian geometry is a generalization of Euclidean geometry. In addition, the first fundamental form of a surface in space is a Riemannian metric, and geometry that studies properties on surfaces that are determined only by the first fundamental form is an important example of Riemannian geometry. If a Riemannian metric is given on a differentiable manifold, it is possible to measure the length of a curve, and therefore to consider the (locally) shortest line connecting two points. This is called a geodesic, which is a generalization of the straight line in Euclidean geometry. In addition, the concept of parallel transport in Euclidean space can be generalized to Riemannian manifolds, and based on this, a differential operation called covariant differentiation is defined. This is a differential operation in which the differential of a vector field is also a vector field. Given a plane (a two-dimensional subspace of the tangent space) π at a point P on a Riemannian manifold M, the Gaussian curvature of the surface spanned by all the geodesics that pass through P and are tangent to π is called the cross-sectional curvature of M at P. A Riemannian manifold whose cross-sectional curvature is constant is called a constant curvature space. There are three types of simply connected and complete constant curvature spaces: Euclidean space, sphere, and hyperbolic space. Riemannian geometry in sphere and hyperbolic space is nothing other than non-Euclidean geometry. A transformation that does not change the Riemannian metric (i.e. does not change the distance between two points) is called an isometry. The set of isometries forms a Lie group, called the isometry group. A constant curvature space is a Riemannian manifold with the maximal isometry group. A Riemannian manifold for which point-symmetric transformations about each point are isometries is called a symmetric space. Constant curvature spaces are symmetric spaces, but there are many other symmetric spaces. Symmetric spaces are homogeneous spaces because the isometry group acts transitively on them. The average cross-sectional curvature for all cross sections that are mutually perpendicular and include one direction is called the Ricci curvature, and a Riemannian manifold for which the Ricci curvature is constant is called an Einstein space. Symmetric spaces have been completely classified, but there are still many properties of Einstein spaces that remain unknown. [Koichi Ogiue] [References] | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
リーマン多様体、すなわちリーマン計量が与えられた可微分多様体の微分幾何学をいう。可微分多様体の各点における接空間に内積を対応させる可微分写像をリーマン計量という。内積が与えられることにより各接空間はユークリッド空間の構造をもつから、リーマン幾何学はユークリッド幾何学を一次近似にもつ幾何学といえる。内積が与えられたベクトル空間(すなわちユークリッド空間)はもっとも簡単なリーマン多様体であるから、リーマン幾何学はユークリッド幾何学の一般化である。また、空間内の曲面の第一基本形式はリーマン計量であり、曲面上で第一基本形式だけで決まる性質を研究する幾何学はリーマン幾何学の重要な例である。 可微分多様体上にリーマン計量が与えられれば曲線の長さを測ることができるから、2点を結ぶ(局所)最短線を考えることができる。これを測地線といい、ユークリッド幾何学における直線の一般化である。また、ユークリッド空間における平行移動の概念をリーマン多様体に一般化することができ、それに基づいて共変微分とよばれる微分演算が定義される。これはベクトル場の微分がまたベクトル場であるような微分演算である。 リーマン多様体Mの点Pにおいて平面(接空間の二次元部分空間)πが与えられたとき、Pを通りπに接する測地線全体によって張られる曲面のガウス曲率を、MのPにおける断面曲率という。断面曲率が一定であるようなリーマン多様体を定曲率空間という。単連結で完備な定曲率空間はユークリッド空間、球面、双曲空間の3種類である。球面および双曲空間におけるリーマン幾何学が非ユークリッド幾何学にほかならない。 リーマン計量を変えない(すなわち2点間の距離を変えない)変換を等長変換という。等長変換の全体はリー群をつくり等長変換群といわれる。定曲率空間は最大の等長変換群をもつリーマン多様体である。各点を中心とする点対称変換が等長変換であるようなリーマン多様体を対称空間という。定曲率空間は対称空間であるが、それ以外にも多くの対称空間が存在する。対称空間には等長変換群が推移的に作用しているから等質空間である。一つの方向を含み互いに直交するすべての断面に関する断面曲率の平均をリッチ曲率といい、リッチ曲率が一定であるようなリーマン多様体をアインシュタイン空間という。対称空間は完全に分類されているが、アインシュタイン空間については、いまだわからない性質が多い。 [荻上紘一] [参照項目] | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Riemann, Georg Friedrich Bernhard
… [Kei Yamazaki]. … *Some of the terminology that...
It is believed that the first ryo (code of laws) ...
This canal irrigates the northwestern Fukushima B...
A Meiji era liberal and civil rights activist. A ...
...An administrative agency with overall jurisdic...
…However, since he also assumes a “pure form” or ...
An old town in Kurihara County, located in the mid...
…When we think of new transportation systems, the...
…Socrates and Plato opposed this trend, preaching...
…However, the weight of the same object changes d...
A Russian political theory from the early 16th cen...
…It is located near Patna, the capital of Bihar, ...
A unique Japanese method of calculating ship opera...
It is a reaction product of cellulose and alkali ...
…All of them are large trees that reach a height ...