Riemann integral

Japanese: リーマン積分 - りーまんせきぶん(英語表記)Riemann integral
Riemann integral

A method of integration based on the definition given by the German mathematician Riemann.

Let f(x) be a bounded function given in the interval [a,b].Furthermore, divide the interval [a,b] into smaller intervals x1 , x2 , …, xn -1 (where x0 = a, xn = b), and let the division be Δ ((1) in the figure ).Then, arbitrarily choose a point ξk ( xk-1ξkxk ) within each small interval, and consider the following sum S( Δ ).

S( Δ )=f(ξ 1 )(x 1 -x 0 )+f(ξ 2 )
(x 2 -x 1 )+……+f(ξ n )(x n -x n-1 )
(The sum of the areas of the rectangles in the figure (2))
And, no matter how the division Δ is chosen, and no matter how the point ξ k is chosen from each small interval, if the width of the small intervals that make up the division Δ is uniformly reduced (i.e., the maximum of x k -x k-1 (k=1,2,……,n) is brought closer to 0, where of course n→∞), when S( Δ ) approaches a certain value I, it is said that f(x) is Riemann integrable,

It is expressed as:

After giving this definition, Riemann showed that monotonic functions are Riemann integrable (1854), and it was Heine who showed that continuous functions are Riemann integrable (1874).

[Osamu Takenouchi]

[Reference] | Integration methods | Monotonic functions
Riemann integral (diagram)
©Shogakukan ">

Riemann integral (diagram)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

ドイツの数学者リーマンの与えた定義による積分の方法。

 f(x)は、区間[a,b]で与えられた有界な関数であるとする。さらに、区間[a,b]を分点x1,x2,……,xn-1(x0=a,xn=bとする)によって細分し、その分割をΔとする(の(1))。そして、各小区間内に一点ξk(xk-1≦ξk≦xk)を任意にとり、次の和S(Δ)を考える。

S(Δ)=f(ξ1)(x1-x0)+f(ξ2)
(x2-x1)+……+f(ξn)(xn-xn-1)
の(2)の長方形の面積の和)
 そして、どのように分割Δをとり、またどのように点ξkを各小区間から選んでも、分割Δを構成する小区間の幅を一様に小さくしていけば(すなわちxk-xk-1(k=1,2,……,n)の最大のものを0に近づける、このときもちろんn→∞)、S(Δ)がある一定の値Iに近づくとき、f(x)はリーマン積分可能であるといい、

で表す。

 リーマンはこの定義を与えたのち、単調関数はリーマン積分可能であることを示した(1854)。連続関数がリーマン積分可能であることを示したのは、ハイネである(1874)。

[竹之内脩]

[参照項目] | 積分法 | 単調関数
リーマン積分〔図〕
©Shogakukan">

リーマン積分〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Riemannian manifold

>>:  Riemannian geometry

Recommend

Hibiscus militaris (English spelling)

…[Yoshishige Tachibana]. … *Some of the terminolo...

Daito [town] - Daito

An old town in Higashiiwai County, in the southern...

Manis gigantea (English spelling) Manisgigantea

... They live in a variety of environments, from ...

One character, one stone sutra - Ichiji Issekikyo

These are Buddhist scriptures written one characte...

libretto

The brand name of a Windows mini-notebook computer...

Royal Naval College

… In other countries, the US Naval War College (f...

Phosphoarginine

...A general term for high-energy phosphate compo...

Dandyism

〘Noun〙 (dandyism, dandysm)① Men's fashion or s...

Yaro Kabuki - Yaro Kabuki

The name of a period in early Kabuki. In 1652 (Sh...

Yu Fān (English spelling)

164‐233 A scholar of the Three Kingdoms Dynasty of...

Association Football - Asosie-shion Futboru

About soccer. Football Collection . Source: About ...

Fujiwara Takaie - Fujiwara no Takaie

A nobleman in the mid-Heian period. The fourth so...

Pine forest - Shorin

An industrial city in the northwest of North Hwan...

Kiyohara clan

The clan is widespread from Oshu to Kyushu, and m...

Silica Minerals - Silica Magnolia

A general term for minerals consisting of silicon ...