Riemann integral

Japanese: リーマン積分 - りーまんせきぶん(英語表記)Riemann integral
Riemann integral

A method of integration based on the definition given by the German mathematician Riemann.

Let f(x) be a bounded function given in the interval [a,b].Furthermore, divide the interval [a,b] into smaller intervals x1 , x2 , …, xn -1 (where x0 = a, xn = b), and let the division be Δ ((1) in the figure ).Then, arbitrarily choose a point ξk ( xk-1ξkxk ) within each small interval, and consider the following sum S( Δ ).

S( Δ )=f(ξ 1 )(x 1 -x 0 )+f(ξ 2 )
(x 2 -x 1 )+……+f(ξ n )(x n -x n-1 )
(The sum of the areas of the rectangles in the figure (2))
And, no matter how the division Δ is chosen, and no matter how the point ξ k is chosen from each small interval, if the width of the small intervals that make up the division Δ is uniformly reduced (i.e., the maximum of x k -x k-1 (k=1,2,……,n) is brought closer to 0, where of course n→∞), when S( Δ ) approaches a certain value I, it is said that f(x) is Riemann integrable,

It is expressed as:

After giving this definition, Riemann showed that monotonic functions are Riemann integrable (1854), and it was Heine who showed that continuous functions are Riemann integrable (1874).

[Osamu Takenouchi]

[Reference] | Integration methods | Monotonic functions
Riemann integral (diagram)
©Shogakukan ">

Riemann integral (diagram)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

ドイツの数学者リーマンの与えた定義による積分の方法。

 f(x)は、区間[a,b]で与えられた有界な関数であるとする。さらに、区間[a,b]を分点x1,x2,……,xn-1(x0=a,xn=bとする)によって細分し、その分割をΔとする(の(1))。そして、各小区間内に一点ξk(xk-1≦ξk≦xk)を任意にとり、次の和S(Δ)を考える。

S(Δ)=f(ξ1)(x1-x0)+f(ξ2)
(x2-x1)+……+f(ξn)(xn-xn-1)
の(2)の長方形の面積の和)
 そして、どのように分割Δをとり、またどのように点ξkを各小区間から選んでも、分割Δを構成する小区間の幅を一様に小さくしていけば(すなわちxk-xk-1(k=1,2,……,n)の最大のものを0に近づける、このときもちろんn→∞)、S(Δ)がある一定の値Iに近づくとき、f(x)はリーマン積分可能であるといい、

で表す。

 リーマンはこの定義を与えたのち、単調関数はリーマン積分可能であることを示した(1854)。連続関数がリーマン積分可能であることを示したのは、ハイネである(1874)。

[竹之内脩]

[参照項目] | 積分法 | 単調関数
リーマン積分〔図〕
©Shogakukan">

リーマン積分〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Riemannian manifold

>>:  Riemannian geometry

Recommend

Ropshin, V. (English spelling) RopshinV

…He was arrested in 1906, but escaped with the he...

Psyche

Means "soul" in Greek. She is the protag...

Daisaku Souma - Daisaku Souma

A ronin from the Nanbu (Morioka) clan. The master...

Akatateha (English spelling) Indian red admiral

This butterfly belongs to the order Lepidoptera, ...

Aluminum alum - aluminium alum

...When crystallized from hot water, large crysta...

Zeche

…Brotherhoods were the basis of human ties in med...

Dry deck

…Generally, several decks are installed in layers...

Chemical analysis

This refers to the procedures or methods for iden...

Budding - shutsuga (English spelling)

(1) A type of asexual reproduction in small, singl...

Tender offer - Tender offer

Acquiring a large number of shares from an unspeci...

Kamoshajinin - Kamoshajinin

...Their activities pushed the development of the...

Bidder's organ

…This phenomenon is called juvenile hermaphroditi...

comedy of character

...The characters with comical personalities (mis...

Kineya Katsugoro (first generation)

...The twelve transformations for the twelve mont...

gas chromatography

...The peak area is calculated by approximating t...