The chemical industry manufactures ceramic products by firing clay and other non-metallic raw materials at high temperatures of over 1000°C in a kiln. It is called the ceramics industry because kilns are used in the manufacturing process. Ceramics, derived from the ancient Greek word keramos (pottery), is a general term for non-metallic inorganic materials made by high-temperature processing during the manufacturing process, and has excellent heat resistance, corrosion resistance, and electrical insulation properties. They can be broadly divided into traditional ceramics, such as pottery, glass, and cement, which are made from natural mineral raw materials such as pottery stone, feldspar, and clay, and fine ceramics (also called new ceramics), which are made from highly refined natural and artificial raw materials using precisely controlled molding and sintering processes. The history of ceramics in Japan began in the Jomon period with earthenware, but in the late Kofun period, the techniques of anagama kilns and pottery wheels, which could be fired for long periods at high temperatures of over 1000°C, were introduced from the continent, and well-formed, hard earthenware (sueki) began to be produced. In the Heian period, pottery with high-temperature glazes began to appear, and pottery production areas such as Bizen (Okayama Prefecture), Mino (Gifu Prefecture), Seto (Aichi Prefecture), Tokoname (Aichi Prefecture), and Shigaraki (Shiga Prefecture) were established. In the Kamakura and Muromachi periods, techniques were transferred from the Song dynasty, and techniques unique to each production area also developed. The technique of porcelain, a dense pottery made by mixing clay with feldspar and firing it, was introduced from the Korean Peninsula during the Azuchi-Momoyama period, about 400 years ago. Porcelain is fired at high temperatures of around 1300°C, so even if it is thin, it is harder and more durable than earthenware. Porcelain production began in Arita (Saga Prefecture), and the techniques spread to Kutani (Ishikawa Prefecture), Kiyomizu (Kyoto Prefecture), Tajimi (Gifu Prefecture), Seto, and other places. In the 19th century, ceramics became a daily necessity as tableware, and in the early Meiji period, German G. Wagener introduced European ceramic techniques such as coal kiln firing and coloring with cobalt oxide. In 1904 (Meiji 37), the first pure white Western porcelain in Japan was manufactured by Nippon Toki (now Noritake Company Limited). Traditional ceramic products are used for tableware and kitchen utensils such as pottery and glass tableware, decorative and hobby items such as vases, brooches and buttons, and sanitary items such as washbasins, toilets and bathtubs. In addition, due to the molding techniques cultivated in ceramics and properties such as electrical insulation and corrosion resistance, ceramics have come to be widely used as insulating materials for power lines and home electrical appliances. Due to their heat resistance and mechanical strength, they are also widely used as building and civil engineering materials such as bricks, cement, tiles, glass fibers and ceramic siding materials. Ceramic siding materials, which have excellent fire resistance and resistance, account for 70% of the share of exterior walls for detached houses, due in part to demand for renovations. Fine ceramics are high-performance ceramics manufactured through a strictly controlled process using carefully selected raw powders with precise adjustments to their chemical composition, microstructure, and shape. In general, the manufacturing process involves (1) compounding, mixing, and grinding the raw materials to produce powder, (2) forming the material by pressing, extruding, injecting, casting, or other methods, (3) firing at a high temperature below the melting point, and (4) grinding and joining the material to produce the finished product. Fine ceramics include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silicon carbide (SiC), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ). By controlling the type of raw material, particle adjustment, and sintering method according to the application and purpose, it is possible to manufacture materials with various electromagnetic, optical, mechanical, chemical, and biological functional properties. Materials with electromagnetic functions include insulating materials such as integrated circuit (IC) boards and wiring boards, piezoelectric materials such as quartz crystal oscillators and piezoelectric spark elements, semiconductor materials such as thermistors and solar cells, and ferrite magnets. They are used in a wide range of applications, taking advantage of their insulating, piezoelectric, semiconducting, and magnetic properties. As for optical functions, materials with properties such as translucency, light collection, and light guiding are used in high-pressure sodium lamps, laser materials, optical memory elements, optical shutters, light-emitting diodes (LEDs), and solar cell materials. Two-thirds of fine ceramics are electromagnetic and optical. Mechanical functional materials include ceramic tools and cutting materials such as sintered diamonds that take advantage of their hardness, strength, and heat resistance, as well as heat-resistant and wear-resistant materials such as engine parts and ceramic gas turbines. Because they are lighter than metals, they are also used as aircraft materials for aircraft, artificial satellites, and space rockets. As chemical functional materials, they are used in gas sensors, temperature sensors, catalyst carriers for purifying automobile exhaust gas, and carriers for immobilized enzymes. Materials that satisfy biocompatibility requirements, such as artificial bones, artificial joints, and artificial teeth, are being developed as biologically functional materials. Fine ceramics manufacturers include Kyocera (named Kyoto Ceramics when established in 1959), which was established for the purpose of manufacturing fine ceramics, and new venture companies, as well as traditional ceramic manufacturing companies such as Koransha, which has been manufacturing Arita porcelain since the Edo period, Noritake Company Limited, which was established for the purpose of manufacturing Western-style tableware, and NGK Insulators (named Nippon Gaishi when established in 1919), which was established by separating the insulator manufacturing division of Nippon Toki (the former name of Noritake Company Limited). [Yamamoto Yasuhiro] "The Easy Book of Ceramics" edited by the Ceramic Society of Japan (2009, Nikkan Kogyo Shimbun) [Reference items] | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
窯炉(キルンkiln)を用いて1000℃以上の高温で粘土その他の非金属原料を焼成処理してセラミックスceramics製品を製造する化学工業。製造時に窯を使用するために窯業とよばれる。 セラミックスは、古代ギリシア語のケラモスkeramos(焼き物)に由来することばで、製造工程で高温処理をしてつくられた非金属無機材料の総称であり、耐熱性、耐食性、電気絶縁性に優れている。鉱物質天然原料の陶石、長石、粘土などを用いてつくられる陶磁器、ガラス、セメント等の伝統的セラミックスと、高純度に精製した天然原料や人工原料から精密に制御した成形・焼結加工法によってつくられるファイン・セラミックスfine ceramics(ニューセラミックスともいう)とに大別できる。 日本におけるセラミックスの歴史は、土器として縄文時代から始まるが、古墳時代後期に大陸から1000℃以上の高温で長時間焼くことのできる穴窯とろくろの技術が伝わり、形のよい硬い陶器(須恵器(すえき))がつくられるようになった。平安時代には高火度のうわぐすりをかけた焼き物がみられるようになり、備前(びぜん)(岡山県)、美濃(みの)(岐阜県)、瀬戸(せと)(愛知県)、常滑(とこなめ)(愛知県)、信楽(しがらき)(滋賀県)等の焼き物の生産地ができてきた。鎌倉・室町時代には、宋(そう)からの技術の移植とともに産地独自の技術の発展もみられるようになった。粘土に長石を混ぜて焼く緻密(ちみつ)な焼き物である磁器の技術は約400年前の安土桃山(あづちももやま)時代に朝鮮半島から伝わった。磁器は1300℃ほどの高温で焼くために薄手でも陶器より硬く耐久性がある。有田(ありた)(佐賀県)で磁器の生産が始まり、その技法は九谷(くたに)(石川県)、清水(きよみず)(京都府)、多治見(たじみ)(岐阜県)、瀬戸などにも伝わっていった。19世紀になると陶磁器は日常の食器として生活必需品化し、明治初期にドイツ人のG・ワグネルによって石炭窯の焼成、酸化コバルトによる着彩技術など欧州の窯業技術が導入された。1904年(明治37)には日本で初めて純白洋磁器が日本陶器(現、ノリタケカンパニーリミテド)によって製造されている。 伝統的セラミックス製品は、陶磁器、ガラス食器などの飲食器・台所用品、花瓶、ブローチ、ボタンなどの装飾・趣味用品、洗面器、便器、浴槽などの衛生用品などに使われている。また、陶磁器で培われた造形技術と電気絶縁性、耐食性などの特性とによって、送電線や家庭電気製品の絶縁材料としても広く使われるようになった。耐熱性や機械的強度の特性により煉瓦(れんが)、セメント、タイル、ガラス繊維、窯業系サイディング材などの建築土木材料としても広く利用されている。防耐火性に優れた窯業系サイディング材はリフォーム需要などもあり戸建て住宅の外壁のシェアの7割を占めている。 ファイン・セラミックスとは、精選した原料粉末を用い化学組成、微細組織、形状を精密に調整して、厳密に管理・制御した工程で製造された高機能セラミックスをさしている。一般的な製造工程では、(1)原料を調合・混合・粉砕し粉体をつくり、(2)加圧・押出し・射出・鋳込み等の方法で成形し、(3)融点以下の高温で焼成して、(4)研削・接合して製品とする。ファイン・セラミックスには、アルミナ(Al2O3)、ジルコニア(ZrO2)、炭化ケイ素(SiC)、窒化アルミニウム(AlN)、窒化ケイ素(Si3N4)などの種類がある。用途や目的にあわせ原料の種類や粒子の調整と焼結方法を制御することによって、さまざまな電磁気的、光学的、機械的、化学的、生体的機能特性をもたせた素材を製造することができる。 電磁気的機能をもつ素材としては、集積回路(IC)基板や配線基板などの絶縁材料、水晶振動子や圧電火花素子などの圧電体材料、サーミスターや太陽電池などの半導体材料、フェライト磁石などがあり、絶縁性、圧電性、半導体性、磁性等の特性を生かして広範囲の用途に利用されている。光学的機能としては、透光性、集光性、導光性等の特性をもたせた素材が、高圧ナトリウムランプ、レーザー用材料、光メモリー素子、光シャッター、発光ダイオード(LED)、太陽電池素材などで利用されている。ファイン・セラミックスの3分の2はこれら電磁気・光学用のものが占めている。機械的機能素材としては硬度や強度、耐熱性等を生かしたセラミック工具や焼結ダイヤモンドなどの切削材料、エンジン部品やセラミック・ガスタービンなどの耐熱・耐摩耗材料などがある。金属に比較して軽量のために航空機、人工衛星、宇宙ロケットなどの機体材料としても利用されている。化学的機能素材としては、ガスセンサー、温度センサー、自動車排気ガス浄化用触媒担体、固定化酵素の担体などに利用されている。生体的機能素材として人工骨、人工関節、人工歯などの生体適合性を満たした素材が開発されている。 ファイン・セラミックス製造企業には、ファイン・セラミックス製造を目的に設立された京セラ(1959年設立時の社名は京都セラミツク)や新規のベンチャー企業等のほか、江戸時代から有田焼の磁器製造を行っている香蘭社(こうらんしゃ)、洋食器の製造を目的に設立されたノリタケカンパニーリミテド、日本陶器(ノリタケカンパニーリミテドの旧社名)の碍子(がいし)製造部門を分離して設立された日本ガイシ(1919年設立時の社名は日本碍子)などの伝統的セラミック製造企業もみられる。 [山本恭裕] 『日本セラミックス協会編『トコトンやさしいセラミックスの本』(2009・日刊工業新聞社)』 [参照項目] | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Demand deposit - yōkyūbaraiyokin (English spelling) demand deposit
An American film production and distribution compa...
...going out to eat outdoors. The word pique-niqu...
…But on the other hand, they were also believed t...
Sacrament. A sign of an inward or spiritual grace ...
The first bird, which lived about 150 million yea...
…It shows the rapid development of Ur during the ...
…In the Mediterranean Sea at the same time, there...
...Therefore, Japan has never produced writers li...
...often exhibit strong reducing properties. (2) ...
A city in the southwest of Kanagawa Prefecture. It...
American theoretical meteorologist. He laid the f...
Also called the Shonan region. This coastal area ...
Also known as the pillbug (illustration). A small ...
…He was also active in government-related work. H...
…A thin, mesh-like fabric made by weaving four wa...