Bohr radius

Japanese: ボーア半径 - ぼーあはんけい(英語表記)Bohr radius
Bohr radius

This refers to the degree of extension of a hydrogen atom in its ground state (usually the radius of the first orbit of an electron in a hydrogen atom). It is used as a unit of length and its symbol is a 0. When the Planck constant h divided by 2π is ħ, e is the unit charge, and m is the mass of an electron, this refers to a length of ħ 2 / me 2 , with a 0 = 5.29177249×10 -11 m.

If it were possible to derive the extent of a hydrogen atom using classical mechanics, the quantity with the dimension of length that represents this extent should be able to be expressed as a combination of mass and charge, but this is not possible. Danish theoretical physicist N. Bohr derived the Bohr radius, which represents the extent of a hydrogen atom, by adding a condition for orbital selection using the Planck constant, i.e., a quantum condition, to the orbit of an electron based on classical mechanics. In actual cases, instead of m , a reduced mass μ (mu), expressed by the mass M of a proton and m, is used. Also, the high energy state (excited state) of a hydrogen atom has an extent that is an integer multiple of the Bohr radius.

[Hajime Tanaka]

[Reference] | Ground state | Planck constant | Excited state

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

水素原子の基底状態における広がりの程度(通常、水素原子内電子の第一軌道半径)のこと。長さの単位として用いられ、記号はa0である。プランク定数hを2πで割ったものをħ、eを単位電荷、mを電子の質量としたときħ2/me2の長さをいい、a0=5.29177249×10-11mの大きさをもつ。

 古典力学を用いて水素原子の広がりを導き出すことができるとすれば、この広がりを表す長さの次元を有する量が、質量および電荷の組合せによって表すことができるはずであるが、それは不可能である。デンマークの理論物理学者N・ボーアは、古典力学に基づいた電子の軌道に、プランク定数を用いた軌道選択の条件すなわち量子条件を付加して、水素原子の広がりを表すボーア半径を導いた。実際の場合にはmのかわりに陽子の質量Mmとで表される換算質量μ(ミュー)を用いる。また水素原子の高いエネルギー状態(励起状態)はボーア半径の整数倍の広がりをもつ。

[田中 一]

[参照項目] | 基底状態 | プランク定数 | 励起状態

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Boa Vista (English spelling)

>>:  Hoa Hao Religion - Hoa Hao Religion

Recommend

Waldensians - Waldo is (English spelling) Waldenses

A heretical Christian sect that spread mainly in s...

Elmira Correctional Institution - Elmira Correctional Institution

...A treatment system that aimed not only to avoi...

Stenodryomyiza formosa (English spelling)

...Some species emerge from discarded oyster shel...

Isaac Casaubon

1559‐1614 French scholar of Greek literature. Born...

École du Louvre (English name)

…It is one of the world's largest art museums...

Himalayas [mountain range] - Himalayas

The world's highest mountain range, which runs...

Van Than (English spelling)

This refers to the class of intellectuals in premo...

Taurika

...Yalta, Miskhor, Gurzuf, Artyom and other resor...

Gladiator - Gladiator (English spelling)

It translates to "gladiator" or "s...

Shimotsuki Kagura

〘Noun〙 Kagura dance that accompanies the Yudate ri...

Arayu [Hot Spring] - Arayu

...A hot spring located in the northwest of Gunma...

Kurisuno - Kurisuno

The name of Yamashina Village, Uji County, Yamashi...

Article Management Law - Buppinkanriho

Law No. 113 of 1956. The purpose of this law (Arti...

Shiranui tale

A collection of 90 chapters. First published in 1...

Watson-Crick (English)

…In most DNA molecules, the two strands are arran...