Variable star - Henkousei (English spelling) variable star

Japanese: 変光星 - へんこうせい(英語表記)variable star
Variable star - Henkousei (English spelling) variable star

Stars change their brightness and properties over time.

History of discovery and observation

As the name suggests, stars were thought to be unchanging in the past. Therefore, a "nova" that suddenly began to shine in the sky was a great surprise to ancient people. As a result, many records remain. In 134 BC, Hipparchus discovered a bright nova, which prompted him to create a star catalog. In Japan, Fujiwara Teika recorded the appearance of a "guest star" (1054) in his Meigetsuki. This guest star was one of the supernovae that appeared in the Milky Way, and its remains are still known as the "Crab Nebula." Scientific measurements of changes in luminosity began when Tycho Brahe observed a nova (actually a supernova) in 1572 and Fabricius discovered periodic variations in the light of the star O (Omicron) in the constellation Cetus (Mira) in 1596.

Initially, observations were visual, so the accuracy of the luminosity measurements was low, and only a small number of variable stars were discovered. However, from the end of the 19th century, astronomical photography came into practical use, and the accuracy and frequency of discovery improved significantly. At that time, photography was sensitive to blue colors, and the measurement accuracy was about 0.1 magnitude. In the 20th century, photoelectric photometry was introduced in the 1940s, and the accuracy increased by an order of magnitude in the same blue range, but the sensitivity increased nearly 100 times that of photography, especially in the red range, with the introduction of CCDs (charge-coupled devices) in the 1980s. If the photometric accuracy is 0.001 magnitude, the variation of 0.09% of the star's surface is measured, but if you observe stars with that accuracy, most stars, including the sun, will show variation, making it increasingly difficult to distinguish them from variable stars. However, there are still only a limited number of stars that show large-scale variation, and as of 1992, the number of variable stars listed in the General Catalog of Variable Stars published by the Russian Academy of Sciences reached 28,450, and there were more than 20 types.

In addition, in the 20th century, spectroscopic observations, which break down light into wavelengths, developed and made a significant contribution to elucidating the physical processes behind photovariation phenomena. Since the 1950s, radio and infrared observations, as well as observations of ultraviolet, X-rays, and gamma rays from outside the atmosphere, have developed rapidly, and observation methods have become increasingly diverse, including simultaneous observations using telescopes around the world and joint observations linking ground and satellites.

[Tomokazu Kogure]

Classification

The change in the brightness of a variable star is expressed as a light curve, which allows analysis of the periodicity of the change, the width of the variation, the pattern of brightening and dimming, etc. Furthermore, if information on the wavelength distribution of light, absorption lines, emission lines, etc. can be obtained through spectroscopic observations, more detailed analysis can be performed.

There are two types of stars: apparent variables and physical variables. The former are two distant stars that revolve around a common center of gravity as a binary star system, and when they happen to be seen from a direction close to the orbital plane, an eclipse occurs, causing the light to change. The latter can be caused by a single star itself, or by the interaction of two nearby binary stars that cause the light to change.

Physical variables can be further classified into short, long, and irregular variables based on the period of their variation. Short-period variables include Delta Cephei and RR Lyrae (periods ranging from one to several tens of days). They are called pulsating variables because the basic cause of their variation is the expansion and contraction motion (pulsation) caused by the instability of the star itself. Long-period variables are concentrated in red giants, with periods of around 150 to 400 days, and are also pulsating variables. On the other hand, irregular variables include variations during their birth and explosive variations. There are many causes for the variations, including sudden energy releases around or on the surface of the star, and collisions between gas flows and the star or the disk surrounding the star in close binary systems.

Variable stars were once thought to be special stars, different from normal stars, but the development of stellar evolution theory since the 1950s has revealed that the variability of stars is closely related to their evolutionary process. It is believed that at some stage in their evolution, each star becomes a variable star that is unique to that stage.

[Tomokazu Kogure]

Stellar Evolution and Variable Stars

Stars are born when clouds of cold dust (interstellar matter) in interstellar space condense due to gravity. The condensation of the cloud begins in the center, where it has high density and temperature, and when energy production by nuclear reactions begins in the central core, it becomes a full-fledged star. The dust that was initially on the periphery of the cloud slowly descends and is absorbed into the star, causing complex light variations. Stars that are contracting due to their own gravity are called pre-main sequence stars, and stars that shine due to hydrogen nuclear reactions are called main sequence stars. Main sequence stars are extremely stable stars, so they rarely show significant light variations, and emit stable light for as short as tens of millions of years (blue stars) to tens of billions of years (red stars). When hydrogen is depleted by nuclear reactions, the star leaves the main sequence and enters a period of instability, and finally, when the nuclear reactions in the center of the star end, the star explodes or is crushed by its own gravity. This is called the "death of the star." In relation to the life of a star, variable stars can be classified as follows. Note that (1) to (3) are related to the evolution of single stars.

(1) Nascent (pre-main sequence) variable stars
(2) Unstable period (mainly pulsating variables after the main sequence)
(3) Variable stars associated with the end (death) of a star
(4) Variable stars associated with the evolution of binary star systems [Tomokazu Kogure]

Nascent variable stars

A typical example of such a star is a T Tauri star. The star's central temperature is low because the main body of the star is still contracting and no central nuclear reactions have occurred, and large-scale convection is developing near the surface. Gas eruptions and explosions similar to those in the solar chromosphere and corona continue to erupt from the convection zone, causing unstable variations in light. Dust gas that has fallen later is also caught up in the convection zone, causing high-speed gas to flow out at hundreds of kilometers per second, and collisions between gas particles cause ultraviolet and X-ray radiation, resulting in repeated active movements. T Tauri stars exist in groups near young gas nebulae and cold dust clouds in Taurus and Orion, and are typical celestial bodies in regions where stars are being born.

Stars generally become stable after passing through the birth stage and progressing to become main sequence stars, but among low-temperature M-type stars, there are stars called flashing stars (flare stars) that repeatedly undergo explosive increases in brightness due to vigorous chromospheric activity. These are thought to be large-scale flares on the surface of the Sun. When viewed in light, they suddenly increase in brightness within a few seconds, then gradually decrease in brightness within a few minutes to a few hours. In X-rays, they show an even more rapid rise in brightness, but in radio waves, they show a more gradual increase and decrease in brightness. These are very similar to solar flares, and suggest the presence of regions with strong magnetic fields on the surface of the star, just like solar flares.

[Tomokazu Kogure]

Pulsating variable stars

As hydrogen is consumed and helium accumulates in the core of a main sequence star, the star leaves the main sequence and the outer layers of the star expand inversely, increasing the density and temperature of the core, turning it from a giant to a red giant. On its journey, the star passes through two prominent pulsation instability zones. The first zone is the Cepheid variable, which is a short-period pulsating star. The second zone appears in the evolved red giant region of low-mass stars and is called the Mira variable, which is a long-period variable.

Generally, pulsating variable stars change their brightness as they pulsate, but the maximum and minimum of the brightness appear later than the minimum and maximum of the star's radius. This indicates that it takes time for the pulsation inside the star to become waves and reach the surface. The period of the variability is also related to the average density of the star, and the higher the average density of the star, the shorter the period of pulsation. Delta Scuti, which is at the bottom of the Cepheus-type instability belt, has a variability period of only about 2 hours. Among pulsating variable stars, Cepheus-type and cluster-type variables with a period of about one day have a relationship between the average brightness and the pulsation period called the period-luminosity relationship, and the longer the period, the higher the luminosity of the star. Using this relationship, the absolute luminosity of the star can be obtained from the observation of the variability period, and the distance to the star can be estimated by comparing it with the apparent luminosity. Cepheus-type variables with a long period of more than tens of days are supergiants, so they are easy to find from far away. Therefore, this method is a useful method for measuring the distance to distant star clusters and extraterrestrial galaxies. Pulsating variable stars play an important role in probing the structure of the universe.

[Tomokazu Kogure]

A variable star in its final (death) phase

As stars evolve, the elements that undergo nuclear reactions in the center of a star gradually move from light elements such as hydrogen, helium, and carbon to heavier elements, but the heaviest element that undergoes a reaction is iron. Stars that can react with iron are those with masses 30 times or more the mass of the sun. When a star reaches the iron stage, it comes to an end and explodes as a supernova, blowing away most of its mass. What remains after that is a neutron star or a black hole. Stars with a small mass that cannot react with iron become red supergiants, and when they eventually run out of nuclear fuel, they run out of heat sources and collapse due to their own gravity. When this happens, the star's skin is scattered in large pieces, forming a beautiful planetary nebula. It is a phenomenon that is similar to fireworks in the sky. This is the end of a small-mass star. When a star collapses, it becomes an ultra-high-density star called a white dwarf. For example, the sun will collapse in about 5 billion years and become a white dwarf with a radius the same as the Earth. In other words, if the Earth were to have 30 times the mass of the Sun, the white dwarf would have a high average density of about 1 ton per cubic centimeter.

[Tomokazu Kogure]

Variable stars in the evolution of binary star systems

There are many binary stars among the stars. It is estimated that more than 50% of all stars are binary stars. In a binary system, even if two main sequence stars start evolving at the same time, the more massive the star, the faster it evolves. Therefore, if the primary star (the brighter star among the stars that make up the binary system) is a high-mass star, it will first become a neutron star or a black hole, and if it is a medium-mass star, it will become a white dwarf. All of these are super-high-density stars. If the other star in a binary system is a neutron star, it may be observed as a pulsar. This is because neutron stars have a very strong magnetic field and rotate at high speeds, with a rotation period of a few seconds to a few thousandths of a second, so they emit radio waves, light, X-rays, etc. as pulses that match that period. If the other star in a binary system is a white dwarf, it will become a variable star that is different from a high-mass star, and the most important one is a star called a cataclysmic variable.

[Tomokazu Kogure]

Cataclysmic Variables and Nova Friends

Cataclysmic variables are a type of variable star that brightens explosively and gradually fades. Novas have a single recorded explosion, recurrent novas explode every few decades, dwarf novas have smaller increases in brightness and shorter intervals of explosions (a few dozen days), and nova-like stars do not exhibit explosive phenomena but show properties similar to novae. Cataclysmic variables are a general term for all of these. All of these are binary star systems, and the first evolved star has already ended its life as a star and become a white dwarf, and the companion star (the dimmer star in the binary system) that follows is often a dark red star that has evolved considerably and become enlarged. Cataclysmic variables also have quiescent and active periods (when they explode) because the companion star intermittently sends a large amount of gas to the primary star, some of which collides with the primary star and some of which collides with the rotating gas disk orbiting the primary star and explodes. When this intermittent gas flows in and collides with the surface of a star or its rotating disk and explodes, it becomes one of various types of nova. The type of nova that occurs depends on the masses of the primary and secondary stars, their distance from each other, the duration of the intermittent period, and the amount of gas flowing in.

[Tomokazu Kogure]

"The Physics of Stars" by Kitamura Masatoshi (1974, University of Tokyo Press)""The Search for Variable Stars" by Shimoho Shigeru (1980, Koseisha Kouseikaku)""Supernovae" by David H. Clark, translated by Okamura Hiroshi (1987, Kaimeisha)""The Universe of Stars: A Modern Introduction" by Sakurai Kunitomo (1987, Kyoritsu Shuppan)""Introduction to Space Science" by Ozaki Yoji (1996, University of Tokyo Press)""Why Do the Stars Shine?" by Ozaki Yoji (2002, Asahi Press)""The Time of the Universe, the Time of Humanity" by Ito Naoki (Asahi Sensho)

[References] | X-ray objects | Crab nebula | Giant stars | Cepheus | Stars | Main sequence stars | Eclipses | Novae | Interstellar matter | Star catalogs | Red giants | Neutron stars | Supergiants | Supernovae | Tycho Brahe | Iron | Charge-coupled devices | Astronomical observations | Astrophotometry | Astronomical spectroscopy | Telescopes | Magnitude | White dwarfs | Pulsars | Hipparchus | Fabricius | Black holes | Flares | Stars | Mira | Moonlight | Binary stars | Planetary nebulae
Mira's light variation
Its pulsation period is 332 days, and its apparent magnitude ranges from 2.0 to 10.1. The photographs were taken in 2008 (Heisei 20), and from the left are November 12, November 26, and December 1. ©Toyama City Museum of Natural History ">

Mira's light variation

T Tauri
A variable star in the constellation Taurus. It is a pre-main sequence star about 1 million years old, and a faint disk structure of gas and dust can be seen around it. Stars like this are called T Tauri stars (T Tauri type stars). ©National Astronomical Observatory of Japan ">

T Tauri


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

時間とともに明るさや性質を変える恒星。

発見・観測史

恒星はその名のとおり昔は不変のものと考えられていた。だから、突然、天空に輝き始める「新星」は古代の人には大きな驚きであった。そのため多くの記録も残っている。紀元前134年にヒッパルコスは明るい新星を発見し、恒星表作製の契機とした。日本でも藤原定家(ていか)は『明月記(めいげつき)』のなかで「客星(かくせい)」の出現(1054)を記録している。この客星は銀河系に現れた超新星の一つで、その残骸(ざんがい)はいまも「かに星雲」として知られている。光度変化の科学的な測定は、ティコ・ブラーエが1572年に新星(実は超新星)を観測し、ファブリキウスが1596年にくじら座ο(オミクロン)星(ミラ)に周期的変光を発見したころから始まる。

 当初は眼視観測だったので光度測定の精度も低く、発見される変光星の数も少なかったが、19世紀末葉から天体写真が実用化されるようになって精度も発見頻度も著しく向上した。当時の写真は青い色に敏感で測定精度は約0.1等級であった。20世紀に入ると、1940年代には光電測光法が導入され、同じ青色領域で精度が1桁(けた)増したが、1980年代に導入されたCCD(電荷結合素子)によってとくに赤色域を中心に感度が写真の100倍近く上昇した。測光精度が0.001等級とすると星の表面の0.09%の変光を測定することになるが、その精度で星を見ると太陽を含めたほとんどの星が変光を示すことになり、変光星との区別がますます困難になる。とはいえ、大規模な変光を示す星はなお限られており、ロシア科学アカデミー出版の『変光星総合カタログ』に記載されている変光星は1992年の時点で2万8450個に達し、その種類も20種を超えている。

 また、20世紀に入ると光を波長に分解する分光観測が進展し、変光現象の物理的過程の解明に大きく貢献しているが、1950年代以降は電波、赤外線観測や大気圏外からの紫外線、X線、γ(ガンマ)線観測が急速に発展して、世界的な望遠鏡群による同時観測や地上と衛星を結ぶ共同観測など、観測法もますます多様化している。

[小暮智一]

分類

変光星の明るさの変化は光度曲線として表され、それによって変化の周期性、変光幅、増光減光のようすなどが解析される。また、分光観測によって光の波長分布、吸収線、輝線などの情報が得られれば、さらに詳しい解析ができる。

 星には見かけの変光星と物理的な変光星とがある。前者は二つの離れた星が連星として共通重心の周りを公転しているのを、たまたま軌道面に近い方向から見るために食現象がおこって変光するという場合である。後者には一つの星自体に原因をもつ場合と、近接連星として相互作用で変光をおこす場合がある。

 物理的変光星はさらに変光周期によって短周期、長周期、不規則に分類できる。短周期変光星にはケフェウス座δ(デルタ)星、こと座RR星などがある(周期1日から数十日)。星自体の不安定性による膨張収縮運動(脈動)が基本的な変光の原因となっているので脈動変光星という。長周期変光星は赤色巨星に集中しており、周期は150日から400日くらい、やはり脈動型の変光である。一方、不規則変光星には誕生期の変光と爆発型の変光とがある。変光の原因は星の周辺または表層部における突発的なエネルギー解放によるもの、近接連星におけるガス流と星または星を取り巻く円盤との衝突によるものなど、原因は多様である。

 変光星はかつては通常の星とは別種の特別の星と考えられていたが、1950年代以降に発展した星の進化論によって、星の変光が進化の道程と深い関係をもつことが明らかになった。どの星も進化のある段階でその段階に特有の変光星になると考えられている。

[小暮智一]

星の進化と変光星

恒星は星間空間の冷たい塵(ちり)(星間物質)の雲の重力による凝集によって誕生する。雲の凝縮は密度、温度の高い中心部が先行し、中心核に原子核反応によるエネルギー生産が始まると一人前の星となる。初期に雲の周辺にあった塵はゆっくりと下降して星に取り込まれ複雑な変光現象を生じる。自分の重力で収縮中の星を前主系列星、水素核反応で輝く星を主系列星とよんでいる。主系列星はきわめて安定した星なのでほとんど顕著な変光をおこさず、短くて数千万年(青い星)から数百億年(赤い星)まで安定した光を放つ。核反応によって水素が枯渇すると星は主系列を離れ、不安定期に入り、最後に星の中心部での核反応が終結すると星は爆発するか、自分の重力でつぶれてしまう。それを「星の死」とよんでいる。このような星の一生に関連して変光星は次のように区分けできる。なお、(1)~(3)は単独の星の進化に関係する。

(1)誕生期(前主系列)の変光星
(2)不安定期(主系列星以後のおもに脈動変光星)
(3)星の最後(死)に伴う変光星
(4)連星系の進化に伴う変光星
[小暮智一]

誕生期の変光星

代表的な星はおうし座T型星である。星本体もまだ収縮中で中心核反応がおこっていないので中心温度も低く、表面近くでは大規模な対流運動が発達している。対流層からは太陽の彩層やコロナのようなガスの噴出と爆発が続き不安定な変光を生じる。また遅れて降り積もった塵のガスもそれに巻き込まれて毎秒数百キロメートルの高速ガスを流出させたりガスどうしの衝突で紫外線やX線を放射したりするなど活発な運動が繰り返されている。おうし座T型星はおうし座やオリオン座などの若いガス星雲や冷たい塵の雲の近傍に群をなして存在し、星の生まれつつある領域の代表的天体である。

 星は誕生期を経て主系列星へと進むと一般には安定になるが、低温のM型星では閃光星(せんこうせい)(フレア星)とよばれる星があり、活発な彩層活動で爆発的増光を繰り返す。これは太陽表面のフレア現象が大規模になったものと考えられる。光で見ると数秒間で急激に増光し、数分から数時間でしだいに減光する。X線ではさらに急激な立ち上がりを示すが、電波では逆に緩やかな増光減光を示す。これらは太陽フレアともよく似ており、太陽フレアと同じように星の表面に強い磁場を伴った領域が存在することを示唆している。

[小暮智一]

脈動変光星

主系列星の中心部で水素が消費されヘリウムが蓄積してくると、星は主系列を離れ、中心核の密度、温度を増加させながら星の外層部は逆に膨張し、巨星から赤色巨星へと向かう。その道程で星は二つの顕著な脈動不安定帯を通過する。第一の不安定帯はケフェウス型変光星で短周期の脈動星である。第二は低質量星の進化した赤色巨星の領域に現れ、長周期変光星(ミラ型変光星)とよばれる。

 一般に脈動変光星は脈動運動とともにその明るさを変えるが、明るさの極大・極小は星の半径の極小・極大の時期より遅れて現れる。これは、星内部の脈動が波となって表面に達するまでに時間がかかることを示している。また、変光の周期は星の平均密度と関係があり、平均密度の大きい星ほど短い周期で脈動する。ケフェウス型不安定帯の底部にあたる、たて座δ星では変光周期はわずかに2時間程度である。脈動変光星のうちケフェウス型と周期1日程度の星団型変光星では、平均の明るさと脈動周期との間に周期光度関係とよばれる関係があり、周期の長い星ほど光度が高い。この関係を利用すると変光周期の観測から星の絶対光度が求められ、見かけの明るさとの比較からその星までの距離が推定できる。数十日以上の長い周期のケフェウス型変光星は超巨星なので遠方からも発見されやすい。そのため、この方法は遠方の星団や系外銀河までの距離を測定する有力な方法である。宇宙の構造を探るうえで脈動変光星は重要な役割を担っている。

[小暮智一]

星の最後(死)の時期の変光星

星の中心部で核反応をおこす元素は進化とともに水素、ヘリウム、炭素など軽い元素からしだいに重い元素へと移っていくが、反応をおこすもっとも重い元素は鉄である。鉄まで反応をおこすのは質量が太陽の30倍以上の重い星である。鉄まで反応すると、重い星は最後を迎え、超新星爆発をおこして質量の大部分を吹き飛ばす。その後に残るのは中性子星か、ブラック・ホールである。鉄まで反応できない質量の小さい星は赤色超巨星となり、やがて核燃料を使い尽くすと熱源がなくなるので、星は自分の重力のためにつぶれる。その際、星の表皮を大きく飛び散らせ、美しい惑星状星雲を形成する。あたかも天空の花火に似た現象である。それが質量の小さい星の最後である。星がつぶれると白色矮星(わいせい)とよばれる超高密度星となる。たとえば太陽は約50億年後につぶれ、半径が地球ほどの白色矮星になる。つまり、地球がそのまま30倍の太陽質量になるわけであるから、白色矮星は平均密度が1立方センチメートルあたり1トン程度という高い密度である。

[小暮智一]

連星系の進化に伴う変光星

星の仲間には連星が多い。星全体の50%以上が連星ではないかと推測されている。連星系では二つの主系列星から同時に進化を始めても、星は質量が大きいほど進化が早いから、主星(連星を構成する星のうち、光度の明るいほうの星)が大質量星なら先に中性子星かブラック・ホールになるし、中小質量星であれば白色矮星になる。どれも超高密度星である。連星の相手が中性子星であるとパルサーとして観測されることがある。これは中性子星が非常に強い磁場をもち、また回転周期が数秒から1000分の数秒といった高速自転をしているので、その周期にあった電波、光、X線などをパルスとして放射するからである。連星の相手が白色矮星であると大質量星とは異なった変光星となり、とくに重要なのは激変星とよばれる星である。

[小暮智一]

激変星と新星の仲間

激変星とは爆発的に明るくなってしだいに減光する変光星の仲間で、歴史的に1回の爆発記録のあるものが新星、数十年をおいて爆発を繰り返す星が回帰新星、それより増光の規模が小さく爆発の間隔も数十日と狭い星を矮新星、また、爆発的な現象は示さないが新星に似た性質を示す星を新星類似星とよんでいる。激変星とはこれらの総称である。いずれも連星系で、先に進化した星はすでに星としての生涯を終えた白色矮星になっており、それに続く伴星(連星を構成する星のうち、光度の暗いほうの星)もかなり進化が進んで肥大化した暗い赤色星が多い。激変星にも静穏期と活動期(爆発時)があるのは、伴星が間欠的に多量のガスを主星に送り込み、その一部は主星に衝突し、一部は主星を回る回転ガス円盤に衝突爆発するためである。こうして間欠的に流れ込んだガスが星の表面または回転円盤に衝突して爆発すると種々の新星になるが、どのタイプになるかは主星と伴星の質量、相互距離、間欠の期間、流れ込むガス量などによって決まる。

[小暮智一]

『北村正利著『星の物理』(1974・東京大学出版会)』『下保茂著『変光星の探求』(1980・恒星社厚生閣)』『ディヴィド・H・クラーク著、岡村浩訳『超新星』(1987・海鳴社)』『桜井邦朋著『星々の宇宙――その現代的入門』(1987・共立出版)』『尾崎洋二著『宇宙科学入門』(1996・東京大学出版会)』『尾崎洋二著『星はなぜ輝くのか』(2002・朝日出版社)』『伊藤直紀著『宇宙の時、人間の時』(朝日選書)』

[参照項目] | X線天体 | かに星雲 | 巨星 | ケフェウス座 | 恒星 | 主系列星 | | 新星 | 星間物質 | 星表 | 赤色巨星 | 中性子星 | 超巨星 | 超新星 | ティコ・ブラーエ | | 電荷結合素子 | 天体観測 | 天体測光学 | 天体分光学 | 天体望遠鏡 | 等級 | 白色矮星 | パルサー | ヒッパルコス | ファブリキウス | ブラック・ホール | フレア | | ミラ | 明月記 | 連星 | 惑星状星雲
ミラの変光
脈動周期332日で、実視等級2.0から10.1等まで変化する。写真は2008年(平成20)に観測したもので、左から11月12日、11月26日、12月1日©富山市科学博物館">

ミラの変光

おうし座T星
おうし座にある変光星。誕生後100万年ほどの前主系列期の星で、周囲にガスや塵による円盤構造がかすかに見える。このような星をTタウリ型星(おうし座T型星)という©国立天文台">

おうし座T星


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Variable nebula

>>:  Polarizer - Change

Recommend

Thrush - Thrush

What is the disease? Infection of the oral cavity...

mojtahed

...The social influence of the ulama of this sect...

Street vendor

Small merchants who sell goods by displaying them...

Bacon beetle

...It was named after the damage it causes by fee...

Register

"Register for a course." Source: Yoko Sa...

Ficus benjamina (English spelling) Ficus benjamina

… [Takabayashi Masatoshi]. … *Some of the termino...

coffin fly

…In Europe, there is a species that even breeds i...

Hornwort - Hornwort

A class of mosses. The gametophyte has characteris...

Blushing - Hoobeni

Blush for your cheeks. Blush. Blush color. Source:...

Zamoyscy, Jan

[Born] 1542 [Died] 1605 A Polish nobleman. He rece...

Bellows - Bellows

Humans first learned to use metals when they disco...

New Tahara

This alluvial plateau spreads across the western ...

Great Bridge - Ohashi

[1] [noun] a large bridge. Also, the larger bridge...

Gold and silver inscription

…At the age of 35, he traveled to Beijing as an a...

American President Lines

An American liner company. APL is an American abbr...