Peano curve

Japanese: ペアノ曲線 - ぺあのきょくせん
Peano curve

A curve that completely fills a part of a plane or space. A curve is generally one whose point coordinates are continuous functions of a single real variable t . When we think of a curve, we tend to imagine only smooth lines, but there are other types of curves. In 1890, Italian mathematician Peano created an example of a curve that completely fills the inside of a square. As shown in Figure (1), divide the square D and the interval [0,1] into four equal parts, and make the squares D i D i correspond to the line segments T i T i . This operation is carried out in sequence as shown in Figure (2) and Figure (3). Row of squares D iD ijD ijk ⊃……
For each line segment T iT ijT ijk ⊃……, a unique common point x ijk is determined.
The correspondence t ijk ...x ijk ... is a continuous mapping from the interval [0,1] onto the square D , and therefore a curve that completely fills the square D. Note that AB indicates that A is a subset of B. A curve constructed in this way has an infinite number of double and quadruple points. It is generally known that a Peano curve that completely fills a square has an infinite number of triple or more overlapping points. According to Brouwer's theorem of invariance of domains, a line segment and a square cannot be continuously placed in one-to-one correspondence. Peano curves show that if the one-to-one condition is dropped, a line segment can be placed on a square. On the other hand, a curve that adds the condition that no overlapping points occur to the definition of a curve is called a Jordan curve. A Jordan curve cannot completely fill a square. It has the properties of a curve when considered in common sense.

[Osamu Takenouchi]

[Reference] | Curves | Jordan Curve Theorem
Peano Curve (Diagram)
©Shogakukan ">

Peano Curve (Diagram)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

平面や空間の一部分をうずめ尽くす曲線をいう。曲線とは、一般にその点の座標が一つの実変数tの連続関数となっているようなものをいう。そこで、曲線というと、滑らかな線の形になっているものだけを想像するが、そうでない曲線もある。イタリアの数学者ペアノは1890年に、正方形の内部をうずめ尽くすような曲線の例をつくった。の(1)のように、正方形D、および区間[0,1]を4等分して、正方形DiDiと線分TiTiを対応させる。このような操作をの(2)、の(3)のように順次行っていく。正方形の列
 DiDijDijk⊃……
に対して、ただ一つの共有点xijkが定まるが、この点を、線分の列
 TiTijTijk⊃……
の共有点tijkに対応させる。対応tijkxijkは、区間[0,1]から正方形D上への連続な写像で、したがって正方形Dをうずめ尽くすような曲線となる。なお、ABは、ABの部分集合であることを表す。以上のように構成された曲線には、二重点、四重点が無限に現れる。一般に正方形をうずめ尽くすようなペアノ曲線には三重点以上の重複点が無限に多く現れることが知られている。ブラウアーの領域の不変性の定理によれば、線分と正方形を連続的に1対1に対応させることはできない。ペアノ曲線は、1対1という条件を落とせば、線分から正方形の上への対応が可能であることを示している。一方、曲線の定義に、重複点が現れないという条件を加えたものを、ジョルダン曲線という。ジョルダン曲線は、正方形をうずめ尽くすようなことはできない。常識的に考えたときの曲線の性質をもっている。

[竹之内脩]

[参照項目] | 曲線 | ジョルダンの曲線定理
ペアノ曲線〔図〕
©Shogakukan">

ペアノ曲線〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Richard Beer-Hofmann

>>:  Giuseppe Peano

Recommend

Inductive reasoning - Yesterday's inductive reasoning

...This is a fact which has been implicitly or ex...

Taoism - Dougaku

〘Noun〙① The path that people should follow and lea...

Addressee - Ategaki

1. The address and name of the recipient to be wri...

German Democratic Republic

A republic that existed in the northeastern part ...

Band spectrum

…When an electronic state is excited, vibrational...

Spatula squeeze - Spatula squeeze

A forging technique. A mold and metal plate are ro...

Haarscheibe

… detects sustained contact, i.e., light pressure...

Minamoto no Arihito - The man who grew up

Year of death: Hisayasu 3.2.13 (1147.3.16) Year of...

Heymans

Belgian physiologist. Graduated from Ghent Univers...

Money Pool

...However, in the process of monopolization, the...

Yoshishi

…One of the ancient Japanese surnames. Also writt...

Robert, AJ (English spelling)

...On November 21, 1883, Pilâtre de Rozier (1756-...

Flash Gordon

...The serials of the 1930s and 40s were action-p...

Ooketade - Ooketade

A large annual plant of the Polygonaceae family (...

Somatostatin

Growth hormone secretion inhibitory factor. It is ...