Fraction - bunsuu (English spelling) fraction

Japanese: 分数 - ぶんすう(英語表記)fraction
Fraction - bunsuu (English spelling) fraction

For natural numbers m and n , the size of n parts of 1 divided into m parts is calculated by drawing a horizontal line, with m underneath it and n on top of it.

This is a fraction. In a fraction n / m , m is called the denominator and n is called the numerator. A fraction n / m can also be seen as the quotient of the numerator n divided by the denominator m . In other words, n ÷ m = n / m .

A fraction with a numerator of 1 is called a unit fraction. n / m can be said to be the sum of n unit fractions 1/ m . A fraction with equal numerators and denominators, m / m , is equal to 1. A fraction whose numerator is smaller than the denominator is smaller than 1 and is called a proper fraction, and a fraction whose numerator is larger than the denominator is larger than 1 and is called an improper fraction. In other words, the fraction n / m is a proper fraction when n is smaller than m , and an improper fraction when n is greater than m . The sum of a fraction and an integer, for example the sum of 2/3 and 4, can be found by omitting the + sign and lining up the integer and fraction, as follows:

This can also be expressed as a fraction and called a mixed fraction. Any improper fraction greater than 1 can be expressed as a mixed fraction. Conversely, a mixed fraction can be expressed as, for example,

This can be expressed as an improper fraction as follows:

Natural numbers themselves can be seen as special cases of fractions (e.g. 2=6/3).

There are fractions that are expressed differently but have the same size (e.g. 2/3=4/6=6/9=8/12). Multiplying the numerator and denominator of a fraction by the same integer will result in an equal fraction. Also, when the numerator and denominator have a common factor, dividing the numerator and denominator by it will result in an equal fraction. This is called simplifying a fraction.

Example: 10/15=(5×2)/(5×3)=2/3
Two fractions, n / m and s / r , are equal when n × r = m × s . When there are several fractions with different denominators, they can be expressed as equal fractions with the same denominators. This is called a common denominator.

Example: (2/3,5/8)=(16/24,15/24)
For fractions with the same denominator, the one with the larger numerator is larger. For fractions with different denominators, you can reduce them to the same denominator and then compare them.

The four arithmetic operations with fractions are carried out as follows:

The sum or difference of two fractions with the same denominator is a fraction with the same denominator and the sum or difference of the numerators.


The sum or difference of fractions with different denominators is expressed as a fraction with the same denominator by reducing it to a common denominator, and then calculated using the method described above.

The product of two fractions is a fraction whose denominator is the product of their denominators and whose numerator is the product of their numerators.


A fractional quotient is a fraction whose denominator is the product of the numerator and denominator of the dividend, and whose numerator is the product of the numerator and denominator of the dividend.


For a fraction n / m , the fraction m / n obtained by swapping the numerator and denominator is called the reciprocal of the original fraction. The quotient of a fraction is found by multiplying the fraction being divided by the reciprocal of the dividing fraction. The product and quotient of mixed fractions are calculated by expressing each fraction as an improper fraction and then using the method described above.

Fractions can be thought of as an extension of quotients of natural numbers. Consider the quotient of an integer n divided by a non-zero integer m , expressed as n / m . In this case, due to the rules of arithmetic, the sign of the denominator m can always be positive. When the numerator n is positive, it is a positive fraction, and when it is negative, it is a negative fraction.

The numerator or denominator of a fraction can also be a fraction. This is called a complex fraction.

For example, (2/3)/(4/5), which means 2/3 divided by 4/5.

Furthermore, the numerator or denominator may be irrational. For example, /. In this case, the denominator can be expressed as a rational number with the same size. This is called rationalizing the denominator. When rationalizing a denominator, we use the fact that the size of the fraction remains the same even if the numerator and denominator are multiplied by the same number.

In Example 1 3/, for the denominator, since () 2 = 2, multiply the numerator and denominator by .


For example 2, 2/(+1), use the formula ( a + b )( a - b ) = a2 - b2 and multiply the numerator and denominator by (-1).


[Tatsuro Miwa]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

自然数mnについて、1をm等分したものをn個集めた大きさを、横線を用い、その下にm、その上にnを書いて、

のように表す。これが分数である。分数n/mで、mを分母、nを分子という。また分数n/mは、分子nを分母mで割った商とみられる。つまりn÷m=n/mである。

 分子が1である分数を単位分数という。n/mは、単位分数1/mn個の和といえる。分子と分母の等しい分数m/mは1に等しい。分子が分母より小さい分数は1より小さく、真分数(しんぶんすう)といい、分子が分母より大きい分数は1より大きく、仮分数(かぶんすう)という。つまり分数n/mは、nmより小さいとき真分数、nmより大きいとき仮分数である。分数と整数の和、たとえば2/3と4の和を、+記号を省略し、整数と分数を並べて、

のように表す。これも分数に入れて、帯分数(たいぶんすう)という。1より大きい仮分数は帯分数に表すことができる。また逆に、帯分数は、たとえば

のように仮分数に表すことができる。

 自然数自身、分数の特別なものとみることができる(例 2=6/3)。

 分数には、表し方が違うが、同じ大きさのものがある(例 2/3=4/6=6/9=8/12)。ある分数の分子、分母に同じ整数を掛けると等しい分数が得られる。また分子、分母が公約数をもつとき、それで分子、分母を割ると等しい分数が得られる。これを約分という。

 例 10/15=(5×2)/(5×3)=2/3
 二つの分数n/ms/rが等しいのは、n×r=m×sのときである。分母の違う分数がいくつかあるとき、分母が同じで、それぞれ等しい分数に表すことができる。これを通分という。

 例 (2/3,5/8)=(16/24,15/24)
 分母が同じ分数は、分子が大きいほうが大きい。分母が違う分数では、通分して分母を同じに表してから比べればよい。

 分数の四則計算は、次のようになされる。

 分母の同じ二つの分数の和・差は、その分母を分母とし、分子の和・差を分子とする分数である。


 分母が違う分数の和・差は、通分して分母が同じ分数に表し、前記の方法で計算する。

 二つの分数の積は、それぞれの分母の積を分母とし、分子の積を分子とする分数である。


 分数の商は、割られるほうの分母と割るほうの分子の積を分母とし、割られるほうの分子と割るほうの分母の積を分子とする分数である。


 分数n/mに対し、その分母と分子を入れ替えた分数m/nを、元の分数の逆数という。分数の商は、割られる分数と、割る分数の逆数の積として求められる。帯分数の積・商は、それぞれを仮分数に表してから、前記の方法で計算する。

 分数は、自然数の商からさらに拡張して考えられる。整数nを0でない整数mで割った商を考え、n/mと表す。このとき、計算についての規約から、分母のmの符号はいつでも正とすることができる。そして、分子nが正のときが正の分数、負のときが負の分数である。

 分数の分母や分子が分数であることもある。これを繁分数(はんぶんすう)という。

 例 (2/3)/(4/5)、これは2/3÷4/5のことである。

 さらに分母や分子が無理数のこともある。/などがそれで、このとき、それと同じ大きさで、分母を有理数のものに表すことができる。これを分母の有理化という。分母の有理化の際は、分子、分母に同じ数を掛けても分数の大きさが同じであることを使う。

 例1 3/では、分母のについて、()2=2であることから、分子と分母にを掛ける。


 例2 2/(+1)では、(a+b)(a-b)=a2-b2の公式を利用し、分子と分母に(-1)を掛ける。


[三輪辰郎]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Fraction formula - fraction formula

>>:  Watershed - Bunsuikai

Recommend

Dilution limit - Dilution limit

A measure of the sensitivity of a detection react...

Mexico

…The Aztecs were people of Aztlan, their legendar...

Zhou Wen-mo (English spelling)

[Born] Qianlong 17 (1752). Jiangsu, Kunshan [Died]...

Aria Cantabile - Aria Cantabile

...Historically, the arias were first performed i...

Room

… It is found in India, southern China, Indochina...

"The Nine Classics" - Kyukeikai

…1781 volumes. Also called “Interpretations of th...

Influenza vaccine

…The pathogenic virus is identified by isolating ...

Sassari (English spelling)

A city in the northwest of Sardinia, in western It...

Buzen [city] - Buzen

A city in the eastern part of Fukuoka Prefecture, ...

Onkakitsuke - Letter of Inscription

…Any written document with a few characters was g...

Taipei

The central city of Taiwan. It is located in the ...

Hamna

...According to the later Uppland Code, each Hund...

Johann Heinrich Jung‐Stilling

1740‐1817 German pietist, ophthalmologist, and fin...

Non-alignment

A general term for the ideology, diplomatic princi...

IUPAB - International Union of Physical and Chemical Research

International Union for Pure and Applied Biophysic...