A diode that emits light when a current is passed through the pn junction of a semiconductor. It is also called an LED, using the initial letters of the English word. When a current is passed through the pn junction of a semiconductor diode, the electrons in the n-type semiconductor diffuse into the p-type semiconductor region, and the holes in the p-type semiconductor diffuse into the n-type semiconductor region. These electrons and holes recombine with the holes and electrons in each region, emitting light with a wavelength that corresponds to the energy of the forbidden band width of the semiconductor. This phenomenon is called injection electroluminescence, and was observed in 1907 by HJ Round of England as a phenomenon in which light is emitted when a needle is inserted into silicon carbide and a current is passed through it. It was then rediscovered in 1922 by O.B. Losev/O.V. Losev of the Soviet Union, and much research was conducted on various materials. Today's light-emitting diodes using compound semiconductors were first developed in 1957 by E.E. Loebner at RCA in the United States. By using compound semiconductors, it is easy to create pn junctions with heterogeneous (dissimilar metal junction) structures that have high light-emitting efficiency by combining materials, and it is also possible to artificially create semiconductor crystals with wide band gaps that are suitable for emitting light of any short wavelength. Light-emitting diodes have been developed that emit infrared light for communication, and various visible light such as red, orange, green, and blue for display. For infrared, there are mixed crystals such as gallium arsenide (GaAs) with a wavelength of 0.88 micrometers, GaIn (indium) As, and GaInAsP (phosphorus) that can cover a maximum wavelength of 1.8 micrometers, and in addition, there are compound semiconductors that combine III-V elements with Sb (antimony) to develop diodes with various wavelength bands. For visible light, Zn (zinc)-O (oxygen) pairs are added to GaP as the luminescent center to increase the luminous efficiency for red light, N (nitrogen) is added to GaAsP for orange and yellow light, GaP for green light, and GaN, ZnS (sulfur), ZnSe (selenium), and other II-VI elements for blue light are used. Blue light-emitting diodes, which were considered to be technically extremely difficult to develop, were pioneered in 1993 by Nichia Chemical Industries (Anan, Tokushima Prefecture) and Nakamura Shuji (currently a professor at the University of California), who was successful in developing and commercializing them. Furthermore, for high brightness applications, indium gallium nitride (InGaN), indium gallium phosphide (InGaP), indium gallium aluminum phosphide (InGaAlP), etc. have been developed for emitting blue, green, yellow, red, etc. Light-emitting diodes are bright at several candelas for red, green, and blue, have a luminous efficiency several times that of incandescent lamps, and have a long lifespan, so their uses are expanding to large outdoor displays, traffic lights, car lamps, etc. [Michinori Iwata] "Optoelectronics" by Junichi Nishizawa (1977, Kyoritsu Shuppan)" ▽ "Electronic Displays" edited by Shoichi Matsumoto (1995, Ohmsha)" ▽ "The Appeal of Blue Light-Emitting Devices" edited by Isamu Akamatsu (1997, Kogyo Chosakai)" ▽ "Discovering Red, Discovering Blue" by Junichi Nishizawa and Shuji Nakamura (2001, Hakujitsusha) [Reference] | | | | |©Shogakukan "> Structure of gallium arsenide phosphor light-emitting diodes. Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
半導体のpn接合に電流を流して光を放出させるようにしたダイオード。英語の頭文字を並べてLEDともよぶ。半導体ダイオードのpn接合に電流を流すと、n形半導体の電子がp形半導体域に、p形半導体の正孔がn形半導体域に拡散する。これらの電子と正孔はそれぞれの領域にある正孔と電子と再結合するが、その際、半導体の禁制帯幅に応じたエネルギーに対応する波長の光を放出する。この現象は注入型エレクトロルミネセンスとよばれるが、1907年にイギリスのラウンドH.J.Roundにより、炭化ケイ素に針を立てて電流を流すと発光する現象として観察された。ついで1922年にソ連のローセフO.B.Лосев/O.V.Losevにより再発見され、種々の材料について多くの研究がなされた。今日の形の化合物半導体を用いた発光ダイオードは、アメリカRCA社でのローブナーE.E.Loebnerによる1957年からの開発により始められた。化合物半導体を用いると、材料の組み合わせによって発光効率のよいヘテロ(異種金属接合)構造によるpn接合をつくることが容易で、短い任意の光波長の発光に適した禁制帯幅の広い半導体結晶を人工的につくることもできる。 発光ダイオードは通信用に赤外光、表示用に赤、橙(だいだい)、緑、青の各種の可視光のものが開発されている。赤外用には光波長0.88マイクロメートルのヒ化ガリウム(GaAs)を始め、最大1.8マイクロメートルをカバーできるGaIn(インジウム)As、GaInAsP(リン)などの混晶があり、このほかSb(アンチモン)とのⅢ‐Ⅴ族の組み合わせによる化合物半導体によって種々な波長帯のものが開発されている。可視光用では赤色用にGaPに発光効率を増すために発光中心としてZn(亜鉛)‐O(酸素)ペアを加えたもの、橙、黄色用にはGaAsPにN(窒素)を加えたもの、緑色用にはGaP、青色用にはGaNのほかⅡ‐Ⅵ族のZnS(硫黄)、ZnSe(セレン)などが用いられている。なお、技術的に開発がきわめて困難とされていた青色発光ダイオードは、1993年世界に先がけ日亜化学工業(徳島県阿南(あなん)市)の中村修二(現カリフォルニア大学教授)が開発に成功、実用化したものである。 さらに、高輝度用としてダブルヘテロ接合のほか超格子構造により、インジウム窒化ガリウム(InGaN)、インジウムリン化ガリウム(InGaP)、インジウムリン化ガリウム・アルミ(InGaAlP)などが青色・緑色、黄色、赤色などの発光用に開発されている。発光ダイオードは、赤、緑、青とも数カンデラと明るく、発光効率は白熱灯の数倍以上で、寿命も長いので、屋外用大画面ディスプレー、信号機、自動車用ランプなどへと用途を広げている。 [岩田倫典] 『西澤潤一著『オプトエレクトロニクス』(1977・共立出版)』▽『松本正一編著『電子ディスプレイ』(1995・オーム社)』▽『赤松勇編著『青色発光デバイスの魅力』(1997・工業調査会)』▽『西澤潤一・中村修二著『赤の発見 青の発見』(2001・白日社)』 [参照項目] | | | | |©Shogakukan"> ヒ化ガリウム蛍光体発光ダイオードの構造 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Mount Hakkoda - Hakkodasan
>>: Fermentation tank - fermenter
The term was derived from the play Look Back in An...
A hilly area at the tip of the Noto Peninsula in ...
A former town in Inashiki County, southern Ibaraki...
A public corporation that built and operated the ...
… [Eiichi Asayama]. … *Some of the terminology th...
A device for safely escaping from an aircraft, gen...
…In some cases, bile duct stones can be removed b...
…In 1764, he taught the eight-year-old Mozart whe...
...Also, yellowtails are called yellowtails becau...
…It is also written as “Kagamiyama Kyu-nishiki-e”...
…the collective name for the three supranational ...
… [Mizuho Sawada] [Japan] They are said to have b...
...A guidebook to famous places in Mount Koya wri...
Hitler's main work. After the Hitler Putsch (...
The official name is the Folger Shakespeare Librar...