Quadratic Equation - Rainbow Equation

Japanese: 二次方程式 - にじほうていしき
Quadratic Equation - Rainbow Equation

A quadratic equation is an algebraic (polynomial) equation of the second order. The general form is ax 2 +bx+c=0 (a≠0) where x is the unknown.
This is expressed as follows. To be precise, since there is only one unknown, it is a quadratic equation with one variable. The solution to the quadratic equation ax 2 +bx+c=0 is to create a perfect square root using the first two terms, and then take the square root to find the formula for the solution (root).

We obtain the following. The b 2 -4ac that appears in this formula is called the discriminant of the equation. In the case of real coefficients, when the discriminant is positive, both roots are real numbers (real roots), and when it is negative, they are complex numbers (imaginary roots). Also, when the value of the discriminant is zero, the two roots are equal (equal roots or multiple roots). In this case, even if the coefficients are complex numbers, it is a multiple root. From the root formula, if the two roots are α and β, then,

is obtained (the relationship between the roots and the coefficients).

Quartic equation a(px 2 +qx+r) 2 +b(px 2 +qx+r)+c=0
If we substitute X for the quadratic equation in parentheses, it becomes a quadratic equation for X, so it is called a polyquadratic equation for x. If we solve for X and obtain the two roots α and β, we can then solve the two quadratic equations px 2 +qx+r=α, px 2 +qx+r=β
Solving this, we generally obtain the four roots.

Set up a set of two quadratic equations for the unknowns x and y, and find the general form

We obtain a system of simultaneous quadratic equations with two unknowns. When the coefficients are real, the geometric meaning of the solution is that each equation represents a quadratic curve (circle, ellipse, parabola, hyperbola, and line), and therefore the coordinates of the intersection of two quadratic curves.

[Yoshio Takeuchi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

二次の代数(整)方程式を二次方程式という。一般形はxを未知数として
  ax2+bx+c=0 (a≠0)
で表される。これは正確にいえば未知数が一つであるから一元二次方程式である。二次方程式ax2+bx+c=0の解法は最初の2項を用いて完全平方式をつくり、開平して解(根(こん))の公式

が得られる。この公式に現れるb2-4acを方程式の判別式という。実数係数の場合、この判別式が正の値をとるときは二根とも実数(実根)であり、負の値をとるときは複素数(虚根)であり、また判別式の値がゼロのときは二根は等しい(等根または重根)。この場合、係数が複素数でも重根である。根の公式から、二根をα、βとすると、

が得られる(根と係数との関係)。

 四次方程式
  a(px2+qx+r)2+b(px2+qx+r)+c=0
はかっこ内の二次式をXと置くと、Xについての二次方程式となるから、xの複二次方程式とよばれる。Xについて解き、二根のα、βが得られれば、次に二つの二次方程式
  px2+qx+r=α, px2+qx+r=β
を解いて、一般に四根を得る。

 未知数x、yについての二元二次方程式を連立して、一般形

の連立二元二次方程式を得る。係数が実数のとき、この解の幾何学的意味は、各方程式はそれぞれ二次曲線(円、楕円(だえん)、放物線、双曲線および二直線)を表すから、二つの二次曲線の交点の座標である。

[竹内芳男]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Rainbow trout - Rainbow trout (English spelling)

>>:  West Bengal [State] - West Bengal (English spelling)

Recommend

Midday Mountains - Mahirusanchi

Located on the border between Iwate and Akita pre...

beefwood

... C. equisetifolia L. (English name: horsetail ...

Colophon - Note

The text written after the last line of a scroll o...

Localized hot water supply system

...A general term for equipment used to supply ho...

Rodrignac

...(2) Tropical America: South of Mexico and Flor...

Basava

…(5) Raseśvara (mercury) According to this sect, ...

Yokosuka [city] - Yokosuka

A city in the southeastern part of Kanagawa Prefec...

Albany - Albany (English spelling)

A city in the eastern part of New York State, Uni...

maure

The Mande peoples in Mali include the Bambara (1....

Enclosure mountain - Kakoiyama

During the Edo period, a forest was designated as ...

Kazuo Okochi

Economist. Born in Shitaya, Tokyo on January 29, ...

Antigua Guatemala - Antigua Guatemala

...Capital of the Sacatepéquez department in sout...

Knoll - kaikyu (English spelling) hill

A seafloor rise with a relatively small summit an...

Ushiki Castle

...The center of the Anan region (the southern pa...

Peacock-pheasant (little peacock)

A general term for birds of the Polyplectron genus...