A scale indicating the brightness (luminosity) of stars. Originally, it was used in the Greek era to classify the brightness of stars perceived by the naked eye, with about 20 very bright stars classified as 1st magnitude stars and faint stars barely visible to the naked eye classified as 6th magnitude stars, and the brightness of stars visible in the entire sky was divided into six classes from 1st to 6th magnitude stars. However, with the development of astronomy, it became necessary to measure the brightness of celestial bodies in an objective way, rather than estimating it by human senses. The brightness of a celestial body corresponds to the intensity of light (electromagnetic waves) that falls from the celestial body to the earth per unit area. In the 19th century, it became possible to quantitatively measure the intensity of this light, and it was found that the intensity of the light of a 1st magnitude star is about 100 times that of a 6th magnitude star. Therefore, British astronomer Norman R. Pogson (1829-1891) redefined the magnitude scale and established a scale so that a difference of 5 magnitudes corresponds to exactly 100 times the intensity of light. Then, several photometric standard stars with predetermined magnitudes were set in the entire sky, and the zero point of the magnitude was determined based on these. The numerical values of the magnitudes determined in this way are generally expressed as decimals rather than integers, and if an object is very bright, its magnitude will be negative, and if it is too faint to be seen with the naked eye, its magnitude will be greater than 6. For example, Sirius has a magnitude of minus 1.5, and Barnard's Star has a magnitude of 9.5. When observed from the ground, the light from a celestial object is slightly weakened due to absorption and scattering by the Earth's atmosphere, but the magnitude is corrected for such extinction. For humans, there is a relationship known as the Weber-Fechner law between the strength of a physical stimulus received from the outside and the magnitude of the sensation when it is received. For example, when the strength of the stimulus increases at a constant rate from 1, 2, 4, 8, 16, ..., the magnitude of the sensation increases at a constant interval (difference) from 1, 2, 3, 4, 5, .... In the case of the brightness of a celestial body, the magnitude of the sensation corresponds to the magnitude value (the brighter the object, the smaller the value), and the strength of the stimulus corresponds to the light intensity. Therefore, on a scale of magnitudes where a difference of 5 magnitudes corresponds to 100 times the light intensity, a difference of 1 magnitude corresponds to the "5th root of 100" times the light intensity, or about 2.512 times. The relationship between magnitude ( m ) and light intensity ( I ) can be expressed mathematically as m = -2.5 log I + C , where the value of the constant C is determined by setting the zero point from the observation of a standard star. The error in magnitude measured by an experienced visual observer is about 0.1 magnitude, the error in photography (dry plates or film) is about 0.05 magnitude, and the error in magnitude measured by phototubes or CCD cameras is 0.005 magnitude or less. [Akira Okazaki] Classification by wavelength rangeNowadays, it is possible to determine magnitudes in various wavelength ranges by combining various receivers and filters, but in order to achieve international uniformity, a standard photometric system that specifies several wavelength sensitivity characteristics has been adopted. A representative example is the "UBV photometric system" of Harold L. Johnson (1921-1980) combined with the "RI photometric system" of Gerald E. Kron and Alan Cousins (1903-2001). The U (ultraviolet), B (blue), V (visual = yellow), R (red), and I (infrared) magnitudes cover the wavelength range of 0.36 to 0.79 micrometers. Of these, the V magnitude is measured with wavelength characteristics close to the sensitivity of the naked eye and is also called the "visual magnitude" and is often used as a substitute for the magnitude based on visual observation. The infrared photometric system that extends to longer wavelengths includes the J, K, L, M, and N grades, which cover wavelengths up to 10 micrometers. In the past, "photographic magnitude" and "photographic visual magnitude" were sometimes used for photographic observations, but are now rarely used. The former is slightly closer to the B magnitude mentioned above, and the latter is closer to the V magnitude. The difference in magnitude measured at the two wavelengths is called the "color index," which gives a clue to the surface temperature of a celestial body that emits continuous light. [Akira Okazaki] Radiation class (radiation class)The magnitude measured using an imaginary device that senses the entire range of electromagnetic waves uniformly is called the "radiation magnitude". However, in reality, no such device exists. This is because only visible light, infrared light, and some wavelengths of radio waves reach the ground due to absorption by the Earth's atmosphere and reflection by the ionosphere, making direct measurement virtually impossible. However, by referring to theoretical models and examples of observations outside the atmosphere, the radiation magnitude can be estimated from the apparent magnitude and color index. The radiation magnitude is a scale that corresponds to the amount of radiant energy emitted from a celestial body per second, and is an important quantity for understanding the physical properties of celestial bodies. [Akira Okazaki] Apparent magnitude and absolute magnitudeSince the distance to each celestial object is different, the brightness of the celestial object observed from Earth does not represent the actual brightness of the celestial object itself. In this sense, the magnitudes mentioned above are more precisely called "apparent magnitudes", and are combined with the magnitudes for each wavelength range to express, for example, "apparent visual magnitude" and "apparent radiometric magnitude". On the other hand, to compare the actual brightness of celestial objects, it is convenient to compare the magnitudes when they are all placed at the same distance of 10 parsecs (32.6 light years). This magnitude is called "absolute magnitude", and is expressed, for example, as "absolute visual magnitude" and "absolute radiometric magnitude". Absolute radiometric magnitude is a scale of luminous intensity, and the two can be converted into each other. When simply referring to magnitude, it generally refers to the apparent magnitude. Since the intensity of light coming from a light source is inversely proportional to the square of the distance to the light source, when an object that is d parsecs away is placed 10 parsecs away, the intensity of the light is doubled by ( d /10). Therefore, the relationship between apparent magnitude m and absolute magnitude M is M = m + 5 - 5log d . The apparent apparent magnitude of the Sun is -26.7 and that of Sirius is -1.5, but their absolute apparent magnitudes are 4.9 and 1.4, respectively, so in actual brightness, Sirius is about 3.5 magnitudes brighter than the Sun. [Akira Okazaki] [Reference] |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
星の明るさ(光度)を示す階級。もともとはギリシア時代に肉眼で感じる星の明るさを区分するのに用いられたもので、非常に明るい約20個の星を1等星、肉眼でぎりぎりに見える暗い星を6等星とし、全天に見える星の明るさを1~6等星の6階級に分けていた。しかし、天文学の発達とともに、天体の明るさを人間の感覚で見積もるのではなく、客観的な方法で測定する必要が出てきた。天体の明るさとは、天体から地球に対して単位面積あたりに降り注ぐ光(電磁波)の強さに対応している。19世紀になって、この光の強さを定量的に測定できるようになり、1等星の光の強さは6等星のそれのおよそ100倍であることがわかった。そのため、イギリスの天文学者ポグソンNorman R. Pogson(1829―1891)は、等級の定義を改めて、5等級の差が光の強さでちょうど100倍に相当するように等級尺度を定めた。そして、全天にあらかじめ等級を定めたいくつかの測光標準星を設けて、それらを基準にして等級のゼロ点を決めるようにした。このようにして決められた等級の数値は一般に整数ではなく小数で表され、非常に明るければ等級は負の値になり、肉眼で見えないほど暗い場合には等級は6よりも大きい数になる。たとえば、シリウスはマイナス1.5等、バーナード星は9.5等である。地上で観測する場合、地球大気の吸収や散乱のために天体からの光は少し弱くなるが、等級はそのような減光を補正したものをいう。 人間には、外から受ける物理的刺激の強さとそれを受けたときの感覚の大きさとの間には「ウェーバー‐フェヒナーの法則」として知られる関係があり、たとえば、刺激の強さが1、2、4、8、16、…と一定の倍率で増えていくとき、感覚の大きさは1、2、3、4、5、…というように一定の間隔(差)で増えていく。天体の明るさの場合、感覚の大きさが等級の値(明るいものほど値が小さい)、刺激の強さが光の強さにあたる。したがって、5等級の差が光の強さで100倍に相当する等級尺度では、1等級の差は光の強さで「100の5乗根」倍、すなわち約2.512倍に相当する。等級(m)と光の強さ(I)の関係を数式で表すと、m=-2.5 log I+Cとなり、定数Cの値は標準星の観測からゼロ点を定めることで決まる。熟練した人が眼視観測で測った等級の誤差は0.1等程度であるが、写真(乾板・フィルム)による誤差は0.05等程度、光電管やCCDカメラで測定した等級の誤差は0.005等かそれ以下である。 [岡崎 彰] 波長域による等級の種類現在では、さまざまな受光器やフィルターを組み合わせて、さまざまな波長域で等級を決めることが可能であるが、国際的な統一を図るため、いくつかの波長感度特性を定めた標準測光システムが採用されている。その代表的なものがジョンソンHarold L. Johnson(1921―1980)の「UBV測光システム」と、クロンGerald E. KronおよびカズンズAlan Cousins(1903―2001)の「RI測光システム」をあわせたものである。U(紫外)、B(青)、V(実視=黄)、R(赤)、I(赤外)の各等級で、波長0.36~0.79マイクロメートルの範囲をカバーしている。このうち、V等級は肉眼の感度に近い波長特性で測ったもので「実視等級」ともよばれ、眼視観測による等級の代用とされることが多い。前記より長波長側に延長した赤外の測光システムとして、J、K、L、M、Nの各等級があり、波長10マイクロメートルまでカバーしている。かつては写真観測で「写真等級」「写真実視等級」が用いられたこともあったが、現在ではほとんど使われていない。前者は前記のB等級にやや近く、後者はV等級に近い。なお、二つの波長で測った等級の差を「色指数」というが、これは連続光を放つ天体の表面温度を知る手がかりを与える。 [岡崎 彰] 放射等級(輻射等級)電磁波の全波長域にわたって一様に感じる装置を想定して測った等級を「放射等級(輻射等級(ふくしゃとうきゅう))」という。ただ現実にはそのような装置は存在しない。それは天体からの電磁波は地球大気の吸収や電離層の反射などのために可視光と赤外線・電波の一部の波長域しか地上まで到達しないので、直接的な測定は実質的に不可能だからである。しかし、理論モデルや大気圏外の観測例などを参考にして、実視等級と色指数などから放射等級を推定できる。放射等級は、天体から1秒間に放たれる放射エネルギーに対応する等級であり、天体の物理的性質を知るうえで重要な量である。 [岡崎 彰] 見かけの等級と絶対等級各天体までの距離はそれぞれ異なるので、地球から観測した天体の明るさは天体自身の実際の明るさを表しているわけではない。その意味で、これまで述べてきた等級のことを詳しくは「見かけの等級」といい、波長域別の等級などと組み合わせて、たとえば「見かけの実視等級」「見かけの放射等級」などと表現する。一方、天体の実際の明るさを比較するためには、どれも同一の距離10パーセク(32.6光年)に置いたときの等級で比べると都合がよい。この等級を「絶対等級」といい、たとえば「絶対実視等級」「絶対放射等級」などと表現する。絶対放射等級は光度を等級の尺度で表したものであり、両者は互いに換算できる。単に等級という場合は、一般には見かけの等級をさす。光源からやってくる光の強さは光源までの距離の2乗に反比例するので、dパーセクの距離にある天体を10パーセクの位置においたとき、光の強さは(d/10)2倍になる。したがって、見かけの等級mと絶対等級Mとの関係式は、M=m+5-5logdとなる。太陽の見かけの実視等級はマイナス26.7等、シリウスはマイナス1.5等であるが、絶対実視等級はそれぞれ4.9等、1.4等なので、実際の明るさではシリウスが太陽よりも3.5等ほど明るい。 [岡崎 彰] [参照項目] |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
...This generation critically tried to overcome t...
A 6th-century church poet and a saint in the Easte...
This refers to a group of kabuki, kodan, ninjyoban...
Located in northern China and bordering Mongolia. ...
...Depending on the assembly of these components,...
A general term for marine fish of the Pomacanthida...
Nikaho is an old town in Yuri District facing the ...
…The scope of the Sudetenland varies depending on...
In China, Horai is a sacred mountain located in th...
Abbreviation of program evaluation and review tec...
1800‐49 Yugoslav poet. Born in Slovenia, he studie...
...A general term for marine fish of the genus Ca...
A perennial plant of the grass family (APG classi...
...An investigative method in which an investigat...
A Dravidian language and one of the official langu...