One of the old divisions of geological time. It is a period between the Cretaceous Period, the last period of the Mesozoic Era, and the Quaternary Period, the last period of the Cenozoic Era, and covers most of the Cenozoic Era, from about 66 million years ago to 2.58 million years ago. "Tertiary" was previously an official term, but when the International Union of Geological Sciences (IUGS) announced a new definition of the boundary between the Neogene and Quaternary Periods in 2008 (ratified in 2009), the chronostratigraphic terminology was also revised, and it became an unofficial term used as a general term for the Paleogene (Paleocene, Eocene, Oligocene) and Neogene (Miocene, Pliocene). Some people believe that the following Pleistocene should be included in the Neogene, but the Pleistocene is generally distinguished as the Quaternary. The strata formed in the Tertiary Period are called the Tertiary System, but are generally composed of unconsolidated rocks. The stratigraphic division of the Tertiary System was classically determined in 1832 by Lyell based on the ratio of extant species to the molluscan fossils contained in the strata. Since the 1970s, stratigraphic division has been performed by combining biostratigraphy based on marine planktonic microfossils such as planktonic foraminifera, diatoms, and radiolaria, paleomagnetic stratigraphy, and chronostratigraphy based on radioisotopes. In Eurasia, the Himalayan Alps were formed by the main Paleogene mountain-building period and the Neogene uplift due to the contraction of the Tethys Ocean, which had existed since the Paleozoic era. In relation to this, Africa, India, and Australia, which had been part of the Gondwana continent together with South America and Antarctica, moved northward due to the breakup of Gondwana, and in particular India collided with Eurasia, resulting in the uplift of the Himalayan Mountains, and Africa in the uplift of the Alps (plate tectonics). In the Americas, the mountain ranges extending from the Cordillera in North America to the Andes in South America underwent a major mountain-building period in the Paleogene, and were formed by the intense uplift in the Neogene. The climate changed from warm to cold after the middle Miocene. The Eocene and early Miocene were characterized by a significant marine transgression, while the Oligocene and Pliocene were characterized by a marine regression period. The biggest difference between the Tertiary and the Mesozoic is the transition from the extinction of Mesozoic organisms such as ammonites and dinosaurs at the end of the Mesozoic to modern organisms. The Tertiary is also characterized by the differentiation and diversification of bivalves, gastropods, sea urchins, foraminifera, and crustaceans. The Cenozoic is called the age of mammals, and is characterized by the development of mammals. The first mammals appeared in the late Triassic period of the Mesozoic. Since then, mammals have coexisted with large dinosaurs for over 100 million years. However, these mammals were much smaller and were not able to dominate the land like the dinosaurs. The prosperity of mammals in the Tertiary is closely related to the mass extinction of dinosaurs at the end of the Mesozoic, changes in terrestrial environmental factors, and the development of flowering angiosperms. Mammals began to occupy the living space previously occupied by dinosaurs. Many theories have been proposed to explain the mass extinction of dinosaurs and other Mesozoic organisms at the end of the Cretaceous Period, one of which is the meteorite impact hypothesis. As a result of the meteorite's impact with the Earth, various environmental changes such as increased volcanic activity, a cooling climate, and a drop in sea level have become known. Evidence of a meteorite impact is said to be the presence of clay mineral layers containing heavy elements iridium and shocked quartz, which are not present on the Earth's surface. The former is said to have been brought there by a meteorite from outside the Earth, and the latter is thought to have been formed by a meteorite impact due to the presence of several pairs of parallel, smooth cracks. It is certain that there was a major change in the fossil biota (mass extinction) before and after their existence, but the same cause was not responsible for the large-scale decline in the taxonomic groups of organisms in the fossil biota during the approximately 30 million years of the late Cretaceous Period. Large-scale extinctions of organisms are known to have occurred in the late Eocene (36.5 million years ago) and the middle Miocene (15 million years ago) during the Tertiary Period, but these are also thought to have been caused by something other than meteorite impacts. A characteristic of plants in the Tertiary Period is the flourishing of angiosperms, which developed after the Cretaceous Period of the Mesozoic Era. Plants in the Paleogene and Neogene Periods are not very different, but the latter show remarkable differentiation of climatic zones and regionalization. They have a more modern appearance than those in the Cretaceous Period of the Mesozoic Era. [Toshiyuki Yamaguchi August 19, 2015] [References] | transgression|Marine | | | | | | | | | | | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
地質時代の旧区分の一つ。中生代最後の白亜紀と新生代最後の第四紀の間の、新生代の大部分を占める時期で、およそ6600万年前から258万年前までの時代をいう。「第三紀」は、以前は公式の用語であったが、2008年、国際地質科学連合(IUGS)により「新第三紀」と「第四紀」の境界について新しい定義が発表(2009年に批准)された際に年代層序の用語も見直され、古第三紀(暁新世(ぎょうしんせい)、始新世、漸新世)、新第三紀(中新世、鮮新世)の総称として使われる非公式用語となった。新第三紀に次の更新世を含める意見もあるが、一般には更新世は第四紀として区別している。 第三紀に形成された地層を第三系というが、一般には未固結な岩石からなる。第三系の層序区分は、古典的には1832年にライエルによる地層中に含まれる軟体動物化石のうち現生種の含まれる割合によってなされた。1970年代から、層序区分は、浮遊性有孔虫、珪藻(けいそう)、放散虫などの海生の浮遊性微化石による生層序や、古地磁気層序および放射性同位体による年代層序などを組み合わせて行われている。 ユーラシア大陸では、古生代以後存在したテチス海の縮小によって、古第三紀のおもな造山期や新第三紀の大隆起でヒマラヤ―アルプス山脈が形成された。それと関連して、南アメリカおよび南極大陸とともに一つのゴンドワナ大陸をつくっていたアフリカ、インドおよびオーストラリアが、ゴンドワナ大陸の分裂によって北上し、とくにインドはユーラシア大陸と衝突してヒマラヤ山脈の隆起をもたらし、アフリカはアルプス山脈の隆起をもたらした(プレートテクトニクス)。アメリカ大陸では、北アメリカのコルディエラから南アメリカのアンデスに続く山脈が古第三紀に主たる造山期を経て、新第三紀の激しい隆起によって形成された。気候は中新世中期以降、温暖から寒冷へと移り変わった。始新世および中新世初期の海進は著しく、漸新世および鮮新世は海退期で特徴づけられる。 第三紀が中生代ともっとも異なる点は、アンモナイトや恐竜などの中生代型生物の中生代末の絶滅から現代型の生物へと移り変わったことである。また第三紀は二枚貝、巻き貝、ウニ類、有孔虫類、甲殻類の分化や多様化が進んだことによっても特徴づけられる。新生代は哺乳(ほにゅう)類の時代とよばれるように、哺乳類の発展が特徴的である。最初の哺乳類はすでに中生代の三畳紀後期に出現した。以来哺乳類は約1億年以上の間、大形の恐竜と共存してきた。しかし、この哺乳類はずっと小形で、恐竜のように陸上の支配者にはなれなかった。第三紀に入ってからの哺乳類の繁栄は、中生代末の恐竜の集団的絶滅や陸上の環境要因の変化や花を咲かせる被子植物の発展などと深く関係する。恐竜の占めていた生活空間は哺乳類がかわって占有するようになった。このような恐竜や他の中生代型の生物の白亜紀末の集団的絶滅を説明する多くの説が提案されてきたが、その一つに、隕石衝突説(いんせきしょうとつせつ)がある。隕石の地球への衝突に伴って、火山活動の活発化や気候の寒冷化や海水準の低下など各種の環境変動が知られるようになった。隕石衝突の証拠は地球の表層にはない重い元素イリジウムと衝撃石英を含む粘土鉱物層の存在にあるという。前者は、地球外から隕石によってもたらされたといわれ、また後者は、並行で平滑な幾対もの割れ目の存在で隕石の衝突によって形成されたと考えられている。それらの存在の前後で化石生物相に大きな変化(大量絶滅)があったことは確かであるが、同じ原因が白亜紀後半の約3000万年間に、化石生物相の生物の大規模な分類群の減少をもたらしたのではない。第三紀には、始新世後期(3650万年前)や中新世中期(1500万年前)にも生物の大規模な絶滅が知られているが、それらも隕石衝突とは異なる原因の絶滅と考えられる。第三紀の植物の特徴は、中生代白亜紀以降発展した被子植物の全盛である。古第三紀と新第三紀の植物は大差ないが、後者は気候帯の分化や地域化が著しい。それらは中生代白亜紀よりも現代的な様相をもつ。 [山口寿之 2015年8月19日] [参照項目] | | | | | | | | | | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Third Republic (English: Troisième République French)
>>: Da-san-guan (English spelling)
The third king of the Gupta dynasty in India (reig...
It is the second book of the Old Testament after t...
…Therefore, until the middle of the 18th century,...
...A marine fish of the family Perciformes, famil...
…However, since the atoms of the moderator must b...
A grain god who appears in the Nihon Shoki. "...
An oasis state that flourished in the Turfan Basi...
Many textile products, such as threads, cloth, and...
An art group for painting, sculpture, and printma...
A city in the northern part of central Tokyo. It w...
The Chinese name for Persian Zoroastrianism when i...
...The nakama of the samurai in the Kamakura and ...
A technique of copperplate printing. Unlike engrav...
A member of the mammalian order Carnivora and fam...
A general term for the genus Veronica (Scrophulari...