A curve on a curved surface, any sufficiently small portion of which is the shortest line connecting two points. A geodesic is a generalization of a straight line on a plane. Since geodesics on a sphere are great circles, they are closed curves with a constant length. The geodesics on a right cylindrical surface are generatrix, parallel circles, and spirals (normal helices), and only parallel circles are closed curves. It is difficult to find all the geodesics on a general surface of revolution, but it is easy to see that meridians and parallel circles are geodesics. A straight line is the shortest line connecting any two points, no matter where it is located, but this property does not hold for geodesics on general curved surfaces. For example, on a sphere, a minor arc is the shortest line between two points on a great circle, but a major arc is not the shortest line. Also, on a plane, there is only one straight line that passes through two points, but this property does not hold for geodesics on general curved surfaces. On a sphere, there are an infinite number of geodesics that pass through antipodal points, and on a right circular cylinder, there are an infinite number of geodesics that pass through two points that are not on the same circle. However, within a sufficiently small range, there is only one geodesic that passes through two points. Geodesics are defined in exactly the same way not only for surfaces in space, but also for general Riemannian manifolds. [Koichi Ogiue] [Reference] |©Shogakukan "> Geodesic (the shortest distance between two points on a great circle on a sphere) ©Shogakukan "> Geodesic (geodesic line passing through the antipodal points of a sphere) ©Shogakukan "> Geodesic (non-co-circular on a right circular cylinder) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
曲面上の曲線で、その十分小さい任意な部分が、2点を結ぶ最短線であるようなものをいう。測地線は平面上の直線の一般化である。球面の測地線は大円であるから閉曲線で一定の長さをもつ。直円柱面の測地線は母線と平行円とつるまき線(常螺線(らせん))であり、平行円のみが閉曲線である。一般の回転面の測地線をすべて求めるのはむずかしいが、子午線と平行円が測地線であることは容易にわかる。 直線はそのいかなる部分をとっても2点を結ぶ最短線であるが、この性質は一般の曲面上の測地線に対して成り立たない。たとえば、球面上では大円上の2点に対して劣弧は最短線であるが、優弧は最短線ではない。また、平面上では2点を通る直線はただ1本であるが、この性質も一般の曲面上の測地線に対しては成り立たない。球面では対心点を通る測地線は無数に存在し、直円柱面では同一円上にない2点を通る測地線は無数に存在する。しかし十分小さな範囲内では2点を通る測地線はただ1本である。測地線は空間内の曲面に対してのみならず、一般のリーマン多様体においてまったく同様に定義される。 [荻上紘一] [参照項目] |©Shogakukan"> 測地線(球面の大円上の2点に対する最短… ©Shogakukan"> 測地線(球面の対心点を通る測地線) ©Shogakukan"> 測地線(直円柱面における同一円上にない… 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
...A migratory fish of the polar zone (illustrati...
〘Noun〙① The act of adding charcoal in a tea house....
...A general term for mammals in the marsupial fa...
…a machine that uses the centrifugal force of rot...
…Histoire de Charles XII (1730), conceived during...
…The Priapulida class lives in the mud on the oce...
A city facing the Sea of Japan in northwest Hokk...
...By the time the first Olympic Games (Athens) w...
Soil that has developed from soft, unconsolidated ...
A mountain range stretching from east to west alon...
…Monkey [Kuroda Sueju]. . . *Some of the terminol...
Banks that specialize in foreign exchange and trad...
… [Minoru Imajima]. … *Some of the terminology th...
An algebraic equation in which the degree of the ...
The central nervous system, which is one of the m...