This refers to the movement of an organism in a direction toward the source of the stimulus in response to an external stimulus. If the organism moves toward the source of the stimulus as a result of this movement, it is called positive taxis, and if it moves away, it is called negative taxis. Depending on the type of stimulus, there are distinctions such as chemotaxis (chemical substances as a stimulus), phototaxis (light), thermotaxis (temperature), galvanotaxis (electric current), thigmotaxis (physical contact), geotaxis (gravity), hygrotaxis (humidity), and flowtaxis (water current, air current). [Keiichi Takahashi] Taxis in the strict senseStrictly speaking, the term "taxis" should be used only when an individual organism moves in a fixed direction (orientation) with its body axis toward the source of a stimulus. This type of taxis is also called "taxis in the narrow sense" or "directional taxis" (topotaxis), and can be divided into the following types based on the mechanism of orientation: (1) Tropotaxis: This type of taxis is seen in animals whose sensory organs, nervous system, and motor organs are arranged symmetrically. When there is a difference in the strength of the stimuli received by the left and right sensory organs, the nervous system connecting the sensory organs and motor organs causes a difference in activity between the left and right motor organs, and the body axis rotates until both sensory organs are equally stimulated. When the stimuli received by the left and right sensory organs become equal, the rotation of the body axis stops and the animal moves straight in that direction. Vertaxis is a response to stimuli with clearly defined directions, such as light or gravity. When there is a single stimulus, the animal moves in a straight line, but when there are two or more stimuli, it moves along a path that is a combination of the strength and direction of each stimulus. When an animal that shows vertaxis to light has one eye rendered nonfunctional by painting it black, and is placed under uniform diffuse light, it moves in circles, moving away from the blinded side in positive vertaxis, and toward the blinded side in negative vertaxis. (2) Klinotaxis Before pupation, fly maggots show clear negative phototaxis and move toward a dark place. At this time, the maggot swings its front end from side to side so that the light from behind hits the left and right sides alternately. If the light hitting the left and right sides is of equal intensity, it moves in a straight line away from the light source. This is thought to be because when the body axis is tilted, the front end swings widely to the other side depending on the intensity of light hitting one side. In this case, swinging the body from side to side is an important mechanism for determining the direction of forward movement, and the symmetric arrangement of the sensory organs as in veritaxis is not necessarily required. (3) Telotaxis This is a type of phototaxis in which the animal moves toward a target using only one eye, without requiring a balance of the intensity of stimulation on the left and right sensory organs as in veritaxis and angulation taxis. This is seen in animals that have eyes that can see not only light and dark but also the image of the object (camera eyes). In veritaxis, even if there are multiple sources of stimulation at the same time, their effects are not synthesized as in veritaxis, and all but one source of stimulation are ignored by the central nervous system. Taxism in the narrow sense described above is clearly observed in animals with relatively simple body plans and in single-celled organisms, and can be regarded as a typical behavior genetically inherited by those organisms. [Keiichi Takahashi] Taxotaxis in the broad senseUnlike taxis in the narrow sense, there are cases where an individual moves toward or away from a stimulus source even without the individual's orientation to the stimulus source. In this way, the phenomenon in which a stimulus causes a change in an organism's locomotion that does not involve the orientation of the body axis is called kinesis. Many taxis in the broad sense are caused by kinesis. Bacteria such as E. coli and Salmonella swim in water by rotating their spiral flagella. When there are substances such as sugars or amino acids in the water, they will continue to swim smoothly in the direction in which they sense an increase in their concentration, but if they sense a decrease in their concentration while swimming, they will frequently change direction due to temporary disruptions to their flagellar movement. This change in direction itself is non-stationary, but as a result of this reaction, the bacteria will gradually gather in places with high concentrations of sugars or amino acids. In other words, they exhibit positive chemotaxis. Kinesis in which the frequency and degree of direction changes are changed in response to stimuli, as in this example, is called klinokinesis. In contrast, kinesis in which a stimulus causes a change in the speed of forward movement rather than a change in direction is called orthokinesis. Woodlouses move forward faster in dry places and slower in wet places. This is an example of orthokinesis caused by humidity, which helps woodlouses avoid dry places and gather in wet places. Chemotaxis in the broad sense is observed not only in individual organisms, but also in the cells and reproductive cells that make up the individual bodies of multicellular organisms, and is important for the survival of organisms. Chemotaxis allows white blood cells to gather at inflamed areas and to foreign bodies within the body. Some sperm use chemotaxis to reach egg cells. The process by which a large number of amoeba cells gather together through chemotaxis to form pseudoplasmodium in the cellular slime mold Dictyostelium discoideum has been studied in detail. Cell chemotaxis is also thought to play an important role in the morphogenesis of higher organisms. [Keiichi Takahashi] ©Kanzo Otawa "> Negative phototaxis due to directional taxis Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
生物が外部からの刺激に反応し、刺激源に対して方向性をもった移動運動を行うことをいう。この移動運動の結果、生物が刺激源に近づく場合を正の走性、遠ざかる場合を負の走性という。また、刺激の種類によって、走化性(化学物質が刺激となる)、走光性(光)、走熱性(温度)、走電性(電流)、走触性(物理的接触)、走地性(重力)、走湿性(湿度)、走流性(水流、気流)などが区別される。 [高橋景一] 狭義の走性走性ということばは、厳密には生物の個体が体軸を刺激源に対し一定の方向に向けて(定位して)移動運動を行う場合に限って用いるべきであるとする考えがある。このような走性は、狭義の走性、または指向走性(トポタキシスtopotaxis)ともよばれ、その定位機構によって次のように分けられる。(1)転向走性(トロポタキシスtropotaxis) 感覚器官、神経系、運動器官が、左右対称に配置された動物にみられる走性で、左右の感覚器官が受ける刺激の強さに差があると、感覚器官と運動器官とを結び付けている神経系の作用によって左右の運動器官の活動に差が生じ、両側の感覚器官が均等な刺激を受けるようになるまで体軸が回転する。左右の感覚器官が受ける刺激が均等になると、体軸の回転は止まり、動物はその方向に直進する。転向走性は、光や重力のようにはっきりとした方向性をもつ刺激に対する反応としてみられるもので、単一の刺激源に対しては直進し、二つまたはそれ以上の刺激源がある場合には、それぞれの強度と方向とを合成した経路に沿って進む。光に対する転向走性を示す動物の片方の目を黒く塗りつぶすなどして機能を失わせ、一様な散光照明の下に置くと、正の転向走性を示すものでは失明した側から遠ざかる方向に、負の転向走性を示すものでは失明した側に向かう方向に、ぐるぐると円を描いて運動し続ける。(2)屈曲走性(クリノタキシスklinotaxis) ハエのウジは、蛹(さなぎ)になる前に、はっきりとした負の走光性を示し、暗い所へ向かって進む。このとき、ウジは前端部を左右に振り、後方からの光が左右の側面に交互に当たるようにする。左右に当たる光の強度が等しければ光源からまっすぐに遠ざかっていく。これは、体軸が傾いていると、片側に当たる光の強度に応じて前端部が反対側に大きく振れることによると考えられている。この場合、左右に体を振ることが前進方向を決定する機構のなかで重要であり、転向走性のような感覚器の対称的配置はかならずしも必要でない。(3)目標走性(テロタキシスtelotaxis) 走光性において、転向走性や屈曲走性のように感覚器官に対する左右の刺激強度のバランスを必要とせず、一方の目だけでも目標に向かって進むものをいう。明暗だけでなく、対象物の像を見ることのできる目(カメラ眼)をもつ動物にみられる。目標走性では、同時に複数の刺激源があっても、転向走性のようにその作用は合成されず、中枢神経系の働きによって、一つの刺激源を除いて他はすべて無視される。 以上のような狭義の走性は、比較的単純な体制をもつ動物や、単細胞生物において明確に認められるもので、その生物に遺伝的に備わった定型的行動とみなすことができる。 [高橋景一] 広義の走性狭義の走性とは違って、刺激源に対する個体の定位がなくても、刺激源に近づいたり刺激源から遠ざかったりする反応がおこる場合がある。このように、刺激によって、生物の移動運動に体軸の定位を含まない変化が生じる現象はキネシスkinesisとよばれる。広義の走性にはキネシスによるものが多い。 大腸菌やサルモネラ菌などのバクテリアは、螺旋(らせん)状の鞭毛(べんもう)を回転させて水中を泳ぐ。水中に糖やアミノ酸のような物質があると、その濃度上昇を感じる方向には滑らかに泳ぎ続けるが、泳いでいて濃度下降を感じると、鞭毛運動の一時的な乱れによる方向転換が頻繁におこるようになる。この方向転換自体は無定位的なものであるが、このような反応の結果、バクテリアは糖やアミノ酸の濃度の高い場所にしだいに集まってくる。すなわち、正の走化性を示す。この例のように、刺激によって方向転換の頻度や程度が変化するキネシスをクリノキネシスklinokinesisとよぶ。これに対し、刺激によって方向転換ではなく前進運動の速度に変化が生じるキネシスはオルトキネシスorthokinesisとよばれる。ワラジムシは、乾燥した所では速く、湿った所では遅く前進する。これは湿度によるオルトキネシスの例で、ワラジムシが乾いた場所を避け湿った場所に集まるのを助けている。 広義の走性は、生物の個体ばかりでなく、多細胞生物の個体を構成する細胞や生殖細胞においても認められ、生物が生きていくうえで重要な意味をもっている。白血球は走化性によって炎症部や体内の異物に集まる。精子には走化性によって卵細胞に到達するものがある。細胞粘菌類に属するタマホコリカビでは、走化性によって多数のアメーバ細胞が集合し偽変形体を形成する過程が詳しく研究されている。高等生物の形態形成にも細胞の走性が重要な役割を果たしていると考えられる。 [高橋景一] ©大多和鐘三"> 転向走性による負の走光性 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
Year of death: September 28, 1610 (November 13, 16...
A national tax levied at the time of registration...
1871-1903 A pioneer of the Meiji period. Born in ...
Native to Central America, this fern is now common...
…At that time, part of the stomach contents is di...
A city in northwest Saitama Prefecture. It was inc...
...It is unclear whether arctic desert soils are ...
The ancient name of Hohhot, the capital of the Inn...
The population is concentrated along the rivers a...
Noh shite actor. The eldest son of Kanze Tetsunoj...
British physicist and chemist. Grandson of the 2nd...
…soils that occur in the natural grasslands (prai...
A state in the southern United States. Abbreviated...
...If ships are built here, there is no need for ...
…Ideally, we can imagine a group in which the com...