Total Differential - Zenbibun

Japanese: 全微分 - ぜんびぶん
Total Differential - Zenbibun

A term used to describe the small change in the value of a function of multiple variables when the variables are changed by a small amount. For a function of one variable, f(x), if f(x) is differentiable at a point x= x0 , then

This means that. Let's consider the same thing with functions of multiple variables. Below, we will explain the case of two variables. When z=f(x,y) is a function defined near the point P 0 (x 0 ,y 0 ), there are appropriate constants A and B, and

When this is the case, f(x,y) is said to be totally differentiable with respect to P 0 (x 0 ,y 0 ).

This means that if the point P(x,y) is close enough to P 0 (x 0 ,y 0 ), then f(x,y)-f(x 0 ,y 0 ) is approximately A(xx 0 )+B(yy 0 ). Here,

So, this

or

This is called the total derivative of z. When f(x,y) is a C1 function (a function with continuous partial derivatives), it is totally differentiable, but simply being partially differentiable with respect to both x and y does not mean that it is totally differentiable. Total differentiation is significant for approximately calculating function values, but it is also an important concept as the basis of theories in mathematical science. For example, in mathematical economics, when price v is a function v( x1 , x2 ,……,xn) of several factors x1 , x2 ,……,xn, the price fluctuation Δv based on the fluctuations in factors Δx1 , Δx2 , …… , Δxn is expressed as follows :

It is expressed as:

[Osamu Takenouchi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

変数を微小に変化させたときの多変数関数の関数値の微小変化を表すことば。一変数の関数f(x)では、ある点x=x0においてf(x)が微分可能ならば、それは、

であることを意味する。同様のことを多変数の関数で考える。以下、二変数の場合について説明する。z=f(x,y)は、点P0(x0,y0)の近くで定義された関数であるとき、適当な定数A、Bがあって、

となるとき、f(x,y)はP0(x0,y0)で全微分可能であるという。ここで

とする。このことは、点P(x,y)がP0(x0,y0)に十分近ければ、f(x,y)-f(x0,y0)は近似的にA(x-x0)+B(y-y0)であることをいっている。ここで

となるので、このことを

または

と表し、これをzの全微分という。f(x,y)がC1級関数(連続な偏導関数を有する関数)のときは全微分可能であるが、単にx、yの双方について偏微分可能というだけでは、全微分可能とはならない。全微分は、関数値を近似的に計算するための意味をもつが、そのほか、数理科学の理論の基礎として重要な概念である。たとえば数理経済学において、物価vが、いくつかの要因x1,x2,……,xnの関数v(x1,x2,……,xn)であるとき、要因の変動Δx1,Δx2,……,Δxnに基づく物価の変動Δvは、

で表される。

[竹之内脩]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Senhime - Senhime

>>:  Crossed check - Senbikikogitte (English spelling) Crossed check

Recommend

General waste - General waste

This term is used in the Waste Disposal and Cleani...

Goto Makita - Goto Makita

A science education leader during the Meiji and T...

Wangjian City - Wangjian City

...the name of an ancient Korean dynasty. One of ...

Mount Irazu

...In the prefectures of Chiba, Shizuoka, and Aic...

Unwin, R.

… His proposal was seen by many as a utopian drea...

Kikuko

…Shun is winter. Cod milt is also called chrysant...

Oniwakame - Oniwakame

…It is eaten as a substitute for wakame seaweed, ...

Renal corpuscle

… The external shape also differs depending on th...

Gymnophiona

…the name of a group of primitive amphibians in t...

Temporary hard water - Ichijikousui

When calcium and magnesium in water are dissolved...

Ausonius, Decimus Magnus

[Raw] 310 approx. Bordeaux [Died] c. 393 A poet fr...

Mitsubishi Heavy Industries, Ltd.

A leading heavy machinery manufacturer in Japan. A...

mother family

…A pair of birds and their chicks are collectivel...

Ganzhou - Kanshu

A city in the southern part of Jiangxi Province, C...

Nollet, JA (English spelling) NolletJA

…His early work includes anatomical studies of bi...