Integral equation

Japanese: 積分方程式 - せきぶんほうていしき
Integral equation

A relational expression that includes an integral of an unknown function is called an integral equation. For example, if x is the independent variable, u(x) is the unknown function, f(x),K(x.ξ) are known functions, and λ is a parameter, the relational expression

are integral equations. (1) is called the Fredholm type, and (2) is called the Volterra type. The same is true when there are two or more independent variables.

The problem of finding a solution y=y(x) that satisfies the boundary condition y(a)=y(b)=0 of the ordinary differential equation y″+λy=f(x) can be expressed as an integral equation of the form (1) by setting u(x)=y″(x).

Similarly, an initial value problem for an ordinary differential equation is equivalent to solving a Volterra type integral equation. If we apply the function u(x) to the function

If we write the operator that corresponds to T, then (2) can be expressed as the equation u+λTu=f (1)′ in a suitable function space.
This equation (1)' has properties similar to simultaneous linear equations. These properties have been investigated in detail as properties of bounded operators in Banach spaces and Hilbert spaces. Using this result, we can discuss the solvability of integral equations, and therefore boundary value problems for differential equations.

[Yoshikazu Kobayashi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

未知関数の積分を含む関係式を積分方程式という。たとえば、xを独立変数、u(x)を未知関数、f(x),K(x.ξ)を既知関数、λをパラメーターとして関係式

は積分方程式である。(1)をフレドホルム型、(2)をボルテラ型という。独立変数が二つ以上の場合も同様である。

 常微分方程式y″+λy=f(x)の境界条件y(a)=y(b)=0を満たす解y=y(x)を求める問題は、u(x)=y″(x)と置くことにより、(1)の形の積分方程式を

として解くことに同等になる。同様に、常微分方程式の初期値問題はボルテラ型の積分方程式を解くことに同等になる。関数u(x)に関数

を対応させる作用素をTと書くと、(2)は適当な関数空間における方程式
  u+λTu=f  (1)′
の形に書くことができる。この方程式(1)′は連立一次方程式と類似の性質をもつ。これらの性質はバナッハ空間やヒルベルト空間における有界作用素の性質として詳しく調べられている。この結果を用いて、積分方程式、したがって微分方程式の境界値問題などの可解性を論ずることができる。

[小林良和]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Theory of integrals

>>:  Integrating sphere - SEKIBUNKYU

Recommend

Obrock - Obrock

...serfs could be freely sold, given away, mortga...

Shiba Takatsune

Year of death: 6th year of Joji/7th year of Shohei...

Pidgin languages ​​- pidgin shogo (English spelling)

There are several theories about the origin of the...

Brachylophus fasciatus (English spelling) Brachylophus fasciatus

...During the day, they rest on branches sticking...

Processed texture

…In other words, as deformation progresses, the n...

Lugard, Frederick John Dealtry, 1st Baron Lugard

Born: January 22, 1858, Madras [Died] April 11, 19...

Mahesvara (English spelling)

…He is the chief deity of Hinduism, along with Vi...

green-stone belt

…In this region, areas mainly composed of metamor...

Koginosho

This manor was established in Kogi-go (Kogi-go), H...

Palynology

…The German word Lebensspuren means traces of lif...

Acharaka Nonsense - Acharaka Nonsense

...The term "acharaka play," which refe...

Crofts - Freeman Wills Crofts

A British mystery writer. Born in Dublin, Ireland...

Powerful - Gouriki

It refers to someone who carries luggage. Current...

Olibanum - Olibanum

…Olibanum is also called olibanum, and in China i...

Gelechiidae

…A general term for insects belonging to the fami...