Integral equation

Japanese: 積分方程式 - せきぶんほうていしき
Integral equation

A relational expression that includes an integral of an unknown function is called an integral equation. For example, if x is the independent variable, u(x) is the unknown function, f(x),K(x.ξ) are known functions, and λ is a parameter, the relational expression

are integral equations. (1) is called the Fredholm type, and (2) is called the Volterra type. The same is true when there are two or more independent variables.

The problem of finding a solution y=y(x) that satisfies the boundary condition y(a)=y(b)=0 of the ordinary differential equation y″+λy=f(x) can be expressed as an integral equation of the form (1) by setting u(x)=y″(x).

Similarly, an initial value problem for an ordinary differential equation is equivalent to solving a Volterra type integral equation. If we apply the function u(x) to the function

If we write the operator that corresponds to T, then (2) can be expressed as the equation u+λTu=f (1)′ in a suitable function space.
This equation (1)' has properties similar to simultaneous linear equations. These properties have been investigated in detail as properties of bounded operators in Banach spaces and Hilbert spaces. Using this result, we can discuss the solvability of integral equations, and therefore boundary value problems for differential equations.

[Yoshikazu Kobayashi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

未知関数の積分を含む関係式を積分方程式という。たとえば、xを独立変数、u(x)を未知関数、f(x),K(x.ξ)を既知関数、λをパラメーターとして関係式

は積分方程式である。(1)をフレドホルム型、(2)をボルテラ型という。独立変数が二つ以上の場合も同様である。

 常微分方程式y″+λy=f(x)の境界条件y(a)=y(b)=0を満たす解y=y(x)を求める問題は、u(x)=y″(x)と置くことにより、(1)の形の積分方程式を

として解くことに同等になる。同様に、常微分方程式の初期値問題はボルテラ型の積分方程式を解くことに同等になる。関数u(x)に関数

を対応させる作用素をTと書くと、(2)は適当な関数空間における方程式
  u+λTu=f  (1)′
の形に書くことができる。この方程式(1)′は連立一次方程式と類似の性質をもつ。これらの性質はバナッハ空間やヒルベルト空間における有界作用素の性質として詳しく調べられている。この結果を用いて、積分方程式、したがって微分方程式の境界値問題などの可解性を論ずることができる。

[小林良和]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Theory of integrals

>>:  Integrating sphere - SEKIBUNKYU

Recommend

Brown thrush (akahara)

A passerine bird of the flycatcher family (illustr...

Aisu Ikou - Aisu Ikou

A swordsman from the late Muromachi period. The f...

Kallias (English spelling)

[raw]? [died] After 289 BC, he was an ancient Gree...

Urufirnis pottery - Urufirnis pottery

…A Bronze Age civilization that flourished mainly...

Iacacio - Iacacio

…It is a filamentous colonial cyanobacterium that...

rajas

…The material principle is composed of three elem...

Cameron, AGW - Cameron

… The above are the historical theories of the or...

Sejournet, J.

…For these reasons, hot extrusion of steel, which...

Floating exchange rate system

An exchange rate system in which exchange rates a...

Right hand writing style

One of the samurai occupations of the Middle Ages....

Tarsaticum

…The country's largest seaport, located at th...

Ueno Library

Common name for the Ueno Library, a branch of the ...

Hijikawa [town] - Hijikawa

A former town in Kita District, central Ehime Pref...

Crested Bowerbird - Crested Bowerbird

…Similar breeding behavior is also known in the S...

Living God - Arahitogami

It means a god in human form. In the section on E...