Integral - Sekibun

Japanese: 積分 - セキブン
Integral - Sekibun
[Noun] (Suru)
1. For a given function, all functions that can be differentiated to give the given function. Also, to find them. Indefinite integral.
2. Dividing the area between a curve represented by a function and the x -axis into fixed intervals and finding the limit value of that area. This limit value is also called the definite integral. In this case, the area above the x- axis is defined as positive, and the area below as negative. If F ( x ) is the indefinite integral of a function that becomes f ( x ) when differentiated, that is, f ( x ), then it can be related using the integral symbol ∫ as F ( x ) = ∫ f ( x ) dx . The value F of the definite integral in the interval [ a , b ] can be obtained by substituting the values ​​of x = a , b into the function F ( x ) and taking the difference. In other words, it can be found as F = F ( b ) - F ( a ).
[Additional Note] The relationship between integration and differentiation as inverse operations is called the Fundamental Theorem of Calculus, which was derived independently by Newton and Leibniz in the late 17th century and eventually developed into a major field of mathematics called analysis. If we have a function that represents the change in a quantity that characterizes a certain phenomenon, and if we can obtain the integrated function of that function, we can predict the phenomenon that may occur as a result of the accumulation of changes, or estimate the quantity. In this way, integration, along with differentiation, has become an important method for mathematically describing various phenomena in modern times.

Source: About Shogakukan Digital Daijisen Information | Legend

Japanese:
[名](スル)
与えられた関数について、微分してこの関数になるすべての関数。また、それを求めること。不定積分。
ある関数で表される曲線とx座標軸に挟まれた部分を、一定区間に区切ってその面積を極限値として求めること。またその極限値を定積分という。このとき、x軸より上部の面積を正、下部を負として定義する。微分してfx)になる関数、すなわちfx)の不定積分をFx)とすると、積分記号∫を用いて、Fx)=∫fxdxと関係づけられる。区間[a,b]における定積分の値Fは、関数Fx)にxabの値を代入して、その差をとることで得られる。すなわちFFb)-Fa)で求められる。
[補説]これら積分と微分が互いに逆の演算であるという関係性は微分積分学の基本定理とよばれ、17世紀後半にニュートンとライプニッツによって独立して導かれ、やがて解析学という数学の一大分野に発展した。ある現象を特徴づける数量の変化を表す関数があり、それを積分した関数が得られれば、変化の積み重ねによって起こりうる現象を予測したり、数量を見積もったりすることができる。このように、積分は微分とともに、現代においてさまざまな現象を数学的に記述するための重要な手法となっている。

出典 小学館デジタル大辞泉について 情報 | 凡例

<<:  Integral geometry

>>:  Sekibune

Recommend

Phrenology - Phrenology

The idea that a person's personality and othe...

Cadmus and Hermione - Cadmus and Hermione

… On the other hand, the backlash against this co...

Kandokorofu - Kandokorofu

…Depending on the type of instrument, such as the...

Ichiro

A term used to count the seniority of officials, w...

Reliques of Ancient English Poetry

...That is to say, the term originally meant &quo...

Kanobata

… [Hideo Kuroda] [Early Modern Period] In the Edo...

Kishu Domain

Another name for the Kii Domain, based in Kii Prov...

Mineralogy - mineralogy

A branch of natural science that studies minerals...

Fatal illness - a disease that leads to death

(Original title: Sygdommen til Døden) Philosophica...

Sword-headed ship

During the Edo period, these river boats were used...

Caputo - Caputo

…According to this law, the unit of taxation, the...

Chen Ziyong - Chin Sugo

A Chinese poet of the early Tang dynasty. He was ...

Closed Gate - Heimon

〘noun〙① To close the gate. To close the gate and n...

Winnipeg (English spelling)

The capital of the province of Manitoba, Canada. I...

Klasse an sich (English spelling) Klasseansich

…If a class is aware that it has a mission as a c...