Mathematical philosophy

Japanese: 数理哲学 - すうりてつがく(英語表記)mathematical philosophy
Mathematical philosophy

A branch of philosophy that studies matters related to mathematics. Mathematical objects, such as numbers, are abstract entities that cannot be directly touched by the five senses. However, mathematics is used to great effect to analyze phenomena that can be touched by the five senses, and is also widely used in technologies that deal with concrete things, such as engineering. Many philosophers have long wondered about this, and Pythagoras and Plato, for example, tried to explain it, but their discussions sometimes approached mysticism. Furthermore, mathematical philosophers have repeatedly argued since the 19th century that the axiomatic character of mathematical theory is extremely important, but Aristotle had already provided a precise discussion of this nature.

Modern logic has shown that mathematical concepts can be neatly integrated in set theory, and in particular that, apart from logical symbols, basic concepts that show the relationship between sets and their elements are sufficient. Impressed by this, Russell thought that philosophical problems could also be solved using methods similar to the conceptual analysis used in set theory. This approach to developing philosophy modeled on mathematics is also called mathematical philosophy, but it is sometimes called "mathematical philosophy."

However, a contradiction was discovered within set theory. This was one of the triggers, and mathematics that denies the existence of sets and accepts only those that can be constructed intuitively as mathematical objects gained a certain number of adherents. This position is called "mathematical nominalism." In contrast, the majority of mathematicians seem to assume the existence of sets, and a position that is in line with this sentiment is called "mathematical realism." Some philosophers see in the conflict between the two a modern version of medieval universalism.

Even those who accept the existence of sets from a realist perspective must admit that they cannot give a complete answer in words to the question "What is a set?" This is because they must acknowledge that, thanks to the incompleteness theorem and other theories, there are many essentially different models in the axiom system of set theory. Thus, sets take on a status similar to the "thing-in-itself" in Kantian philosophy. As can be seen from the above examples, many of the fundamental problems in philosophy as a whole are cast over the philosophy of mathematics.

[Yoshida Natsuhiko]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

数学に関連する事柄を研究する哲学の一分野。数学的対象、たとえば数は、五感では直接触れることのできない、抽象的な存在である。しかし、数学は、五感で触れられる事象の分析に用いられて大きな効果をあげ、また工学のように具体的な事物を扱う技術においても盛んに応用される。このことを不思議に思う哲学者は昔から多く、たとえばピタゴラスやプラトンもこの不思議を解き明かすことを試みているが、その際、議論は神秘主義に近づくことがあった。また、数学の理論の公理論的性格がきわめて重要なものであることは、19世紀以降、数理哲学者によって繰り返し説かれたが、すでにアリストテレスは、この性格について適確な議論を残している。

 現代論理学は、数学の諸概念が集合論のなかで整然と統合されることを示し、とくに基本概念としては、論理記号のほかには、集合とその元(げん)との間の関係を示すものだけあれば十分であることを示した。このことに感銘を受けたラッセルは、哲学的な問題もまた、集合論での概念分析に似た手法で解けると考えた。このように、数学に範をとって哲学を展開するやりかたも数理哲学といわれるが、ときにはこれは「数学主義的哲学」ともよばれる。

 集合論の内部にはしかし矛盾が発見された。これも一つのきっかけとなり、集合の存在を否定し、直観によって構成されるものだけを数学的対象として認めようとする立場の数学がある数の信奉者を得るようになった。この立場は「数学的唯名論」とよばれる。これに対し、集合の存在を前提するのが大多数の数学者の心情ではないかと思われるが、この心情に添った立場は「数学的実在論」とよばれる。両者の争いに中世の普遍論の現代版をみる哲学者もいる。

 実在論的に集合の存在を認める立場の者も、「では集合とはどんなものか」という問いに対し、ことばのうえでは完全な解答を与えられないことを認めなくてはならない。不完全性定理などのおかげで、集合論の公理系には、本質的に異なったモデルが多数存在することを認めなくてはならないからである。こうして集合は、カント哲学の「物自体」に似た地位にたつことになる。以上の例でわかるように、数理哲学には哲学全体での根本問題の多くが影を落としている。

[吉田夏彦]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Mathematical Statistics

>>:  Mathematical economics

Recommend

Japan Travel Journal - Nihonhoshoshi

A bibliographical work written by Yang Shoujin of ...

STAB

…King of matches. He started out as an engineer, ...

Soft corn

...The stems and leaves are used as animal feed. ...

Whale bacon - Whale bacon

…Canadian bacon is made from pork back meat, proc...

SEU - Specialized English

Single event upset : An event where radiation or c...

Abangan (English spelling)

A Javanese word referring to a Muslim who is not v...

Great Eastern - Great Eastern

This revolutionary large ship was launched in Engl...

furniture

…The German word Möbel, the French word meuble, a...

Seyakuin - Seyakuin

[1] 〘Noun〙① A medical facility for the sick founde...

Flamboyant

…A tall tree of the legume family widely planted ...

N value - Enuchi

A civil engineering term. It refers to the value ...

Schumann

German composer. Born in Zwickau to parents blesse...

Todaiji Temple Offerings Book

A general term for the catalogues that were submit...

Aperitif

Aperitif. An alcoholic drink consumed before a mea...

Convention on International Trade in Endangered Species of Wild Fauna and Flora

…The official name is the Convention on Internati...