Real Function Theory

Japanese: 実関数論 - じつかんすうろん
Real Function Theory

It is a field that studies real-valued functions of real variables, but it refers to the modern study of functions of real variables that emerged after the mid-19th century, when reflections on the foundations of analysis led to the emergence of real number theory, point set theory, Lebesgue integral theory, etc. The subjects of this research include the Lebesgue integral and the use of it in the theory of differentiation, length, and area, Fourier analysis, etc., and also includes the study of specific function spaces.

The Fundamental Theorem of Calculus can be completed using the Lebesgue integral as follows:

If a function f ( x ) is (Lebesgue) integrable on the interval [ a , b ], then the indefinite integral

becomes differentiable for almost every x,
F ′( x )= f ( x )
Usually, the function f ( x ) is assumed to be continuous everywhere, but it is also possible to use

may exist.

When a sequence of continuous functions { fn ( x )} converges to f ( x ) for each new x ( fn ( x ) → f ( x )), f ( x ) is not necessarily continuous, but it is probably not a terribly discontinuous function. Thus, a function obtained as the limit at each point x of a sequence of continuous functions is called at most a first-class function, and a function obtained as the limit at each point x of a sequence of first-class functions is called a second-class function, etc. For example,

is a function of the second order.

The functions that can be obtained by continuing this operation are collectively called Bair functions. The study of such functions is closely related to the foundations of mathematics.

[Haruo Sunouchi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

実変数の実数値関数を研究する分野であるが、19世紀の中期以降の、解析学の基礎についての反省から、実数論、点集合論、ルベーグ積分論などが出現したのちの近代的な実変数の関数の研究をいう。その研究の対象は、ルベーグ積分やそれを用いての微分や長さ、面積の理論、フーリエ解析などで、具体的な関数空間の研究などもそのなかに含まれる。

 微分積分学の基本定理は、ルベーグ積分を用いると次のように完全になる。

 関数f(x)が区間[a, b]上で(ルベーグ)積分可能ならば、不定積分

は、ほとんど至るところのxで微分可能となり、
  F′(x)=f(x)
なお、普通は、関数f(x)は至るところ連続を仮定するが、連続でなくても

は存在することがある。

 連続関数の列{fn(x)}が、xを決めるごとにf(x)に収束する(fn(x)→f(x))とき、f(x)はかならずしも連続にならないが、それほどひどい不連続関数でもないであろう。そこで、連続関数の列の各点xでの極限として得られる関数を、たかだか第1階級の関数、第1階級の関数列の各点xでの極限として得られる関数を第2階級の関数などという。たとえば

は第2階級の関数である。

 この操作をどんどん続けていって得られる関数を総称してベール関数という。このような関数の研究は数学基礎論とも密接に関係している。

[洲之内治男]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Ground pounding song - Ground pounding song

>>:  Nikkan - Nikkan

Recommend

Ezo Joruri - Ezo Joruri

...The story is a mystical one that skillfully co...

Ending - Gobi

When a term or auxiliary verb changes its form to...

Bandori Incident - Bandori Incident

An uprising that took place in October and Novemb...

Eisenacher School - Aizenahha (English spelling)

A group that formed the Social Democratic Workers...

Sacrifice - nail (English spelling)

Offerings and sacrifices to the spirits. There is...

"Oroku and Gantetsu"

...By the 4th generation Tsuruya Nanboku. Commonl...

Physiognomy - Physiognomy

A general term including bone reading, facial rea...

Jiji Press - Jiji Press

A representative news agency in Japan, along with...

Spanish War of Independence

The war between 1808 and 1814, in which the Spani...

Hirotaka Kose

A representative court painter of the Kose school ...

Awa Bureau - Awa no Tsubone

?-1227 She was the wet nurse of Minamoto no Sanet...

Acquired character

Also called acquired genetic traits. The opposite ...

dirty float

...A type of floating exchange rate system in whi...

"Light-hearted Arare Sake" - Karukuchi Arare Sake

...Rakugo. The original story is "The Free-s...

Akuarai - Akuarai

…Because it is a strong alkali and has a cleaning...