According to the laws of motion, when a force acts on an object, it changes its velocity. If we consider the force as a vector, divided into a component Ft in the direction of the object's motion (direction of velocity) and a component Fn perpendicular to it at each moment, Ft changes the magnitude (speed) of the velocity, and Fn changes the direction of the velocity. If the angle between the direction of the force and the direction of the velocity is θ, then Ft = F cosθ, and if θ is less than 90 degrees, it becomes positive and accelerates the object, and if it is greater, it becomes negative and decelerates the object (see ). The effect of continuing to apply force for a certain period of time is expressed as the product of Ft and the distance moved by the object. When Ft is not constant, the object's trajectory can be divided into smaller sections, and the product of Ft and the infinitesimal distance ds moved at each short section can be calculated, and then added together (integrated). This is called the work done by the force on the object. Using the equation of motion, we can deduce that the work done by the resultant force of all forces acting on an object is equal to the change in kinetic energy of the object. If the mass of the object is m , and the speed of the object at points A and B on its orbit are V A and V B , respectively, the work done by the forces from A to B is When several forces act on an object, we can consider the work done by each force, not just the resultant force. For example, when lifting or carrying an object on the ground, the sum of the work done by the hand and the work done by gravity on the object is equal to the change in kinetic energy. When lifting an object slowly with your hand, the kinetic energy does not increase even though the hand is doing positive work, because gravity is doing negative work at the same time. If we take the z- axis pointing vertically upward, the work done by gravity from point A to point B is expressed as m g z A - m g z B , where g is the gravitational acceleration, and this is negative if B is higher. The sum of the work done by the hand and this is equal to the change in kinetic energy, but when lifting the object slowly and putting it down, both V A and V B are 0, so the work done by the hand is ultimately equal to m g z B - m g z A (>0). If m g z is called the potential energy of gravity, the work done by the hand is used to increase potential energy (without increasing kinetic energy). Since work is the product of the magnitude of force and distance, its unit is expressed as kg・m2/ s2 , which is the product of the unit of force (N = kg・m/ s2 ) and the unit of length m, and is called joule (symbol J). The unit of work is the same as the unit of energy. If the gravitational unit kilogram-force (symbol kgf or kgw) is used for force, the unit of work is kgf・m. 1kgf・m=9.80665J. [Koide Shoichiro] [References] | | | |©Shogakukan "> Relationship between direction and speed of force and velocity (diagram) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
運動の法則によれば、力が物体に作用するとその速度を変化させる。ベクトルとしての力を各瞬間ごとに、物体の運動の方向(速度の方向)の成分Ftとそれに垂直な成分Fnとに分けて考えると、Ftは速度の大きさ(速さ)を変え、Fnは速度の方向を変える働きをもつ。力の方向と速度の方向との間の角をθとすると、Ft=Fcosθと表されるので、θが90度より小さければこれは正になって物体を加速し、大きければ負になって物体を減速する( 参照)。ある時間力を加え続けたときの効果は、Ftと物体の動いた距離の積で表される。Ftが一定でないときには、物体の軌道を細分して、短い区間ごとにそのときのFtと動いた微小距離dsの積を求め、それを加え合わせれば(積分すれば)よい。これを力が物体にした仕事とよぶ。 運動方程式を用いると、物体に働くすべての力の合力のする仕事は、物体のもつ運動エネルギーの変化分に等しいことが導かれる。物体の質量をm、軌道上のA点とB点における物体の速さをVA、VBとすると、AからBまでの間に力のした仕事は 物体にいくつかの力が働いているときには、合力だけでなくそれぞれの力についての仕事を考えることができる。たとえば地上で物体を手で持ち上げたり運んだりするときには、手が物体にする仕事と、重力が物体にする仕事とを合計したものが、運動エネルギーの変化高に等しい。手でゆっくり持ち上げるとき、手は正の仕事をしているのに運動エネルギーが増さないのは、同時に重力が負の仕事をしているからである。鉛直上向きにz軸をとると、A点からB点までの間に重力のする仕事は、重力加速度をgとして、mgzA-mgzBと表され、Bのほうが高ければこれは負になる。手が物体にした仕事とこれとの和が運動エネルギーの変化高に等しいが、ゆっくり持ち上げて置いた場合にはVAもVBも0なので、結局手のした仕事はmgzB-mgzA(>0)に等しい。mgzを重力の位置エネルギーとよぶと、手のした仕事は(運動エネルギーの増加にはならずに)位置エネルギーの増加に費やされたことになる。 仕事は力の大きさと距離の積なので、その単位は、力の単位(N=kg・m/s2)と長さの単位mの積kg・m2/s2で表され、これをジュール(記号J)とよぶ。仕事の単位はエネルギーの単位と一致する。力に重力単位の重量キログラム(記号kgfまたはkgw)を用いると、仕事の単位はkgf・mとなる。1kgf・m=9.80665Jである。 [小出昭一郎] [参照項目] | | | |©Shogakukan"> 力・速度の方向と速さの関係〔図〕 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
A general term for insects in the family Curculion...
…In 1783, he published a textbook consisting of t...
...In Korea, it is called taepyeongso or kotei, a...
…Therefore, the influence of theories about the o...
...The capsule stalk is thick, 5-10 mm long, and ...
This refers to synthetic resins that have electric...
...Kamishimo that is not made of the same fabric ...
…It seems certain that the meaning of the same wo...
It is a movement in which each citizen is aware o...
...We perceive an object as three-dimensional bec...
… [Munemin Yanagi]. … *Some of the terminology th...
…Aigospotamoi (Aegospotami) means "river of ...
Born: Around 450 BC. Athens [Died] circa 388 BC. A...
German ancient historian and politician. Born in ...
A component of the reactor core that generates en...