Pythagoras' theorem - Sanheihou no teri

Japanese: 三平方の定理 - さんへいほうのていり
Pythagoras' theorem - Sanheihou no teri

Given a right-angled triangle ABC, the area of ​​the square with hypotenuse BC is equal to the sum of the areas of the two squares with sides AB and AC. That is,
BC2 = AB2 + AC2
This is called Pythagoras' theorem. It is said to have been discovered by the Greek mathematician Pythagoras around 540 BC, and is known as the Pythagorean theorem. In Japan, the term Pythagoras' theorem was invented during World War II, and has since become the common name. The converse of this theorem also holds true. That is, if the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the apex angle relative to the first side is a right angle. Due to the establishment of this converse theorem, for example, a triangle with sides of lengths 3, 4, and 5 is a right triangle, since 3 2 + 4 2 = 5 2. This method of creating right angles using the relationship of 3, 4, and 5 is said to have been used in ancient Egypt and ancient China for dividing land. In Japanese mathematics (mathematics of the Edo period), Pythagoras' theorem was also known as the Kokogen. The chord refers to the hypotenuse of a right triangle, and the Kokogen and Kokogen refer to the shorter and longer of the remaining two sides.

The fact that the length of the hypotenuse of an isosceles right triangle with an equal side is 1 led to the discovery of irrational numbers, which were previously unknown numbers. On the other hand, pairs of integers that satisfy the Pythagorean relationship, such as 3, 4, and 5, are called Pythagorean triples. If m and n are positive integers (m>n), then
m2 - n2 , 2mn, m2 + n2
is a Pythagorean triplet. The Pythagorean theorem is also the basis for the formula for the distance between two points in a plane or space.

[Toshio Shibata]

"Pythagoras' Theorem" by Shinichi Oya (1975, Tokai University Press)

[References] | Pythagoras
Pythagoras' theorem
©Shogakukan ">

Pythagoras' theorem

Pythagoras' theorem (various methods of proof)
©Shogakukan ">

Pythagoras' theorem (various methods of proof)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

直角三角形ABCが与えられたとき、斜辺BCを1辺とする正方形の面積は、他の2辺AB、ACを1辺とする二つの正方形の面積の和に等しい。すなわち、
  BC2=AB2+AC2
が成立する。これを三平方の定理という。紀元前540年ごろギリシアの数学者ピタゴラスが発見したものといわれ、ピタゴラスの定理として知られている。日本では三平方の定理という呼び方が第二次世界大戦中に考案され、以後通称となった。この定理の逆も成り立つ。すなわち、三角形の1辺の平方が他の2辺の平方の和に等しければ、始めの辺に対する頂角は直角である。この逆定理の成立によって、たとえば、辺の長さが3、4、5である三角形は32+42=52であるから、直角三角形となる。この3、4、5の関係を用いて直角をつくる方法は、古代エジプトや古代中国においても土地の区画などに用いられたという。和算(江戸時代の数学)においても、三平方の定理は勾股弦(こうこげん)という呼び名で知られていた。弦とは直角三角形の斜辺のことで、勾と股は残りの2辺の短いほうと長いほうのことを表している。

 等辺を1とする直角二等辺三角形の斜辺の長さがになることは、無理数というまだ知られていなかった数の発見のきっかけとなった。一方、3、4、5のような三平方の関係を満足する整数の組をピタゴラス数という。mとnを正の整数とすると(m>n)、
  m2-n2, 2mn, m2+n2
はピタゴラス数になる。三平方の定理は平面や空間の2点間の距離の公式の基礎でもある。

[柴田敏男]

『大矢真一著『ピタゴラスの定理』(1975・東海大学出版会)』

[参照項目] | ピタゴラス
三平方の定理
©Shogakukan">

三平方の定理

三平方の定理(いろいろな証明法)
©Shogakukan">

三平方の定理(いろいろな証明法)


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Mount Sanbe - Sanbesan

>>:  Sanpei Pass

Recommend

Shiga [village] - Shiga

A village in Higashichikuma County, central Nagano...

Armane School - Armane School

…When the party split in 1981, it rebelled agains...

Indiaca

A game in which players hit a flat ball with a shu...

High Court - koutou saibansho

The highest-ranking court among the lower courts ...

Ulrika Eleonora (English spelling)UlrikaEleonora

…Then, the Baltic countries under Swedish rule al...

Retroviridae

…An infectious disease caused by the equine infec...

Hyalonema owstoni (English spelling) Hyalonema owstoni

… [Minoru Imajima]. … *Some of the terminology th...

Tonic water

Carbonated water with herb and fruit peel extract...

Ogura Kinnosuke - Ogura Kinnosuke

Mathematician. Born to a shipping wholesaler in S...

Kazkaz

…The North Caucasus is part of the Russian Federa...

The crossroads of Karu-Morokoshi - The crossroads of Karu-Morokoshi

...One of the ancient Japanese markets. The inter...

Akako - Akako

→Lily earthworm Source: Shogakukan Encyclopedia N...

tertiary

…The primary feathers are attached to the palm an...

Shajar al-Durr

?-1257 The first sultan of the Mamluk dynasty. Rei...

Red Fin - Red Fin

Please see the "Red Hook Muleus" page. ...