Mechanics of materials

Japanese: 材料力学 - ざいりょうりきがく(英語表記)material mechanics
Mechanics of materials

Along with thermodynamics, fluid mechanics, and vibration mechanics, it is a branch of applied mechanics in a broad sense, and one of the fundamental sciences of engineering. It is a field that studies the mechanical behavior, i.e., stress, deformation, strength, etc., of machines and structures made of various industrial materials and their component parts when they are subjected to various external forces, both theoretically and experimentally, based on elasticity, plasticity, and material strength science, and also performs engineering approximations and simplifications so that they can be used in actual design. The main purpose of material mechanics is to use industrial materials appropriately for their characteristics and purposes, to rationalize the strength and rigidity of each part of a machine or structure, to ensure that it performs its function stably, and to design it in the most economical way.

[Kunio Hayashi]

history

The origin of material mechanics is ancient, and the Greeks and Romans, who left behind many temples, bridges, fortresses, and other structures, are thought to have had knowledge of material mechanics to build safe structures, even if it was mostly through accumulated experience. However, much of this knowledge of structural engineering that they built up was lost during the Middle Ages, and did not progress at all until it was revived during the Renaissance. Leonardo da Vinci, who was not only a great artist but also left many scientific and technological achievements, was the first person to try to apply statics to determine the forces acting on columns and beams, and to conduct experiments to examine the strength of materials. Although the application of force to an object is a basic property of materials, elastic and plastic deformation, historically, attention was focused first on the strength of materials against destruction. Galileo conducted many experiments and derived a theory on the fracture strength of bars and beams, which he published in his book "Dialogues on the New Sciences." This is said to be the first publication related to material mechanics. Later, R. Hooke discovered the law of elastic deformation, which is still known today as Hooke's law, and this marked the beginning of research into material deformation. In the 18th century, with the development of mathematics and mechanics, many scholars gradually systematized material mechanics, and an education system for engineers was established, and it began to be used in actual design. The current prosperity of mechanical civilization is also due to the extensive use of material mechanics in streamlining the design of machines and structures. The current system of material mechanics owes a lot to Stephen P. Timoshenko (1878-1972), an American engineer of Russian descent. Many of his books have been translated into various countries around the world and used as textbooks and reference books at universities around the world. In recent years, the content of material mechanics seems to be changing due to the spread of computers, advances in material strength science, and the increasing importance of deformation behavior other than elasticity, and it continues to evolve to meet increasingly strict design requirements. According to the "Handbook of Mechanical Engineering" edited by the Japan Society of Mechanical Engineers, the content of material mechanics is as follows.

[Kunio Hayashi]

External forces, stresses and strains

Machines, structures and their components are subjected to various loads when they function, and are supported to determine their position. The mechanical response differs depending on the type of load and the method of support, so these are classified and organized. Solid materials generally deform when subjected to force, and generate forces within the material to resist this deformation. To describe this, the concepts of stress and strain are introduced to derive the equilibrium equations and compatibility condition equations that are the basis of material mechanics.

[Kunio Hayashi]

Elasticity, Plasticity and Viscoelasticity

Solid materials can deform in a variety of ways, but they can be classified as elastic, plastic, or viscoelastic. These deformation laws are described and the material constants that govern them are defined. Hooke's law is the law of elastic deformation, and the elastic coefficient is the proportional constant between stress and strain. When a material is deformed, part of the work done by the external force is stored inside the material as heat, and the rest as potential energy. This is called strain energy, and is one of the important concepts in material mechanics. A stretched or contracted spring contains elastic strain energy that tries to return to its original length. The distribution of stress changes depending on the shape of the material, but if there is a hole or step, the stress in that area will be much greater than in other areas. This phenomenon is called stress concentration, and it is necessary to fully understand it as it causes strength deterioration. The presence of cracks is particularly serious, and the stress intensity factor is defined and examined as a guideline. Viscoelasticity refers to an object that has both elastic (solid) and viscous (fluid) properties, and is the property in which the stress and strain inside the material change over time even when the load and support conditions do not change. Metallic materials also exhibit this property at high temperatures. Moreover, on long-term scales, concrete can also be treated as a viscoelastic material. In recent years, as plastics have come to be used extensively as industrial materials and the conditions under which metallic materials are used have become more severe, research into the viscoelastic behavior of materials has been actively conducted.

[Kunio Hayashi and Yuichi Nakajo]

Material strength

When the force applied to a material becomes too great, it will eventually break, but the manner in which this breakage occurs varies depending on the material and the type of load. Static strength, fatigue strength, impact strength, creep strength, etc. are calculated based on the results of various material tests, and the effects of temperature, shape, etc. on these are clarified. Furthermore, the concepts of allowable stress and safety factor are introduced to provide design guidelines.

[Kunio Hayashi]

Beams, columns, shafts

Rod-shaped materials are the most widely used components in machines and structures. When a rod is subjected to a bending action under a load perpendicular to its centerline, it is called a beam. When it is subjected to a compressive load in the longitudinal direction, it is called a column, and when it is subjected to torsion, it is called a shaft. The internal forces and deformations that occur in these components are organized into a form that is useful for design by introducing engineering approximations into the theory of elasticity. Stiffness, which represents resistance to deformation, is given by the material properties and cross-sectional shape, and a method for evaluating it is shown here. In the case of columns that are long compared to their cross-sectional area, there is a phenomenon in which lateral deflection suddenly increases when the compressive load approaches a certain limit value. This is called buckling, and is something that requires careful consideration when designing columns.

[Kunio Hayashi]

Plate, cylinder, sphere

Reducing the weight of machines and structures not only saves materials, but also leads to improved performance and reduced operating costs for powered devices such as automobiles and aircraft. Flat plates, cylinders, and spheres are the basis of lightweight structures, and eggshell structures are representative examples. Understanding the bending and buckling caused by in-plane forces when these plate members are subjected to loads perpendicular to the plate surface is essential for the design of thin plate structures. In recent years, composite materials made of plastics reinforced with glass or carbon fibers have come to be used as industrial materials, and it is also important to investigate the mechanical properties of such anisotropic composite materials.

[Kunio Hayashi]

Assembled Structure

Machines and structures are generally complex assembled structures that combine flat or curved plates with beams and columns. These are classified into frame structures, thin-walled beam structures, flat plate structures, shell structures, etc., and an analytical method that is as simple as possible and does not lose the essence of the mechanical behavior of the structure is required. Practical design formulas are derived by making full use of engineering approximations according to the required accuracy. These practical calculation formulas require careful experimental support.

[Kunio Hayashi]

Finite Element Method

The finite element method is an approximate numerical analysis method that was born out of the growing demand for more accurate analysis of stress and deformation in machines and structures with complex shapes and structures and a wide variety of loads and support conditions, and the improved performance of computers that came into practical use in the mid-20th century. In the context of an era in which design conditions became stricter and computers became more widespread, the finite element method, which organizes analysis procedures to enable quick and efficient numerical calculations via matrix algebra and allows stress and deformation to be obtained with minimal modeling, has progressed rapidly and has become an important field of material mechanics.

In addition to the matters listed above, important areas of material mechanics also include elucidating the mechanical behavior of materials during machining and developing techniques to experimentally determine the stress and deformation of actual machines and structures.

[Kunio Hayashi]

[References] | Applied Mechanics | Material Testing | Finite Element Method

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

熱力学、流体力学、振動学などとともに広い意味での応用力学の一分野であり、工学の基礎学問の一つである。種々の工業材料でつくられる機械や構造物およびその構成部材が、さまざまの外力を受けるときの力学的挙動、すなわち応力、変形、強さなどを、弾性学、塑性学、材料強度学などを基礎にして理論と実験の両面から考究し、さらに実際の設計に活用できるように工学的近似、簡素化を行ったものである。工業材料をその特性に応じて、目的により適切に使用し、機械や構造物の各部分の強度や剛性を合理的なものとして、その機能を安定して果たし、さらに経済的にももっとも有利なように設計を行うのが材料力学の主要な目的である。

[林 邦夫]

歴史

材料力学の起源は古く、寺院、橋梁(きょうりょう)、城塞(じょうさい)などの建造物を数多く残したギリシア、ローマの人々も、ほとんどが経験の積み重ねによるものにしろ、安全な建造物をつくるための材料力学的知識をもっていたものと思われるが、彼らが築き上げたこの構造工学の知識も中世にはその多くが失われ、ルネサンス期に復活するまでは、まったく進歩しなかった。偉大な芸術家のみならず科学・技術上の業績をも多く残したレオナルド・ダ・ビンチは、柱や梁(はり)に作用する力を求めるのに静力学を適用しようとし、材料の強さを調べるための実験を行った最初の人であった。物体に力を加えると弾性的および塑性的変形を生ずることは、材料の基本的性質であるにもかかわらず、歴史的には材料の破壊に対する強さがまず注目された。ガリレイは多くの実験を行い、棒や梁の破壊強度に関する理論を導き、著書『新科学対話』に発表した。これが材料力学に関係する最初の出版物といわれている。その後、R・フックが、今日でもフックの法則として知られる弾性変形の規則をみいだし、材料の変形に関する研究の端緒となった。18世紀に入ると、数学や力学の発展とともに、多くの学者により材料力学もしだいに体系化され、技術者の教育制度も確立して、実際の設計に利用されるようになった。機械文明が今日の隆盛をみたのも、機械や構造物の設計の合理化に材料力学が大いに活用されたことによる。なお、現在の材料力学の体系はロシア系のアメリカの工学者ティモシェンコStephen P. Timoshenko(1878―1972)に負うところが大きい。彼が著した多くの著書は世界各国で翻訳され、各地の大学で教科書、参考書として使用されてきた。近年、コンピュータの普及や材料強度学の進歩、弾性以外の変形挙動の重要性の増大などにより、材料力学の内容も変わりつつあるように思われ、日増しに高まる厳しい設計要件に対応すべく進歩を続けている。日本機械学会編の『機械工学便覧』によれば、材料力学の内容は以下のとおりである。

[林 邦夫]

外力、応力およびひずみ

機械、構造物およびその構成要素は、それが機能するとき、さまざまな荷重を受け、またその位置を確定するために支持されている。荷重の種類、支持の仕方により力学的応答は異なるので、これらが分類整理される。固体材料は一般に力を受けると変形し、この変形に抵抗して材料内部に力を生ずる。これを記述するために応力、ひずみの概念を導入して材料力学の基本となるつり合い方程式、適合条件式が導かれる。

[林 邦夫]

弾性、塑性および粘弾性

固体材料の変形様式はさまざまであるが、弾性変形、塑性変形、粘弾性変形に分類される。これらの変形則を記述し、それを支配する材料定数を定義する。フックの法則は弾性変形則であり、弾性係数は応力とひずみとの間の比例定数である。また材料は変形を受けるとき、外力の果たした仕事は、一部分は熱に、残りは位置のエネルギーとして材料内部に蓄えられる。これはひずみエネルギーとよばれ、材料力学における重要な概念の一つである。伸縮されたばねは元の長さに戻ろうとする弾性ひずみエネルギーを内蔵したわけである。材料の形状により応力の分布は変化するが、孔(あな)や段があるとその部分での応力は他の部分に比較してきわめて大きくなる。この現象を応力集中といい、強度劣化の原因となるので、十分解明する必要がある。とくに亀裂(きれつ)の存在は重大であり、その目安として応力拡大係数が定義され検討される。粘弾性とは、弾性体(固体)と粘性体(流体)の両方の性質をあわせもつ物体を対象とし、荷重や支持条件が変化しない場合でも材料内部の応力やひずみが時間とともに変化する性質である。高温では金属材料もこの性質を示す。また、長時間スケールではコンクリートも粘弾性体として扱える。近年、プラスチックが工業材料として多用されるようになり、また金属材料の使用条件も過酷になってきているので、材料の粘弾性挙動に関する研究が精力的に進められている。

[林 邦夫・中條祐一]

材料の強さ

材料に加わる力が大きくなるとついには破壊するが、破壊の様相は材料や荷重の種類により多様である。各種の材料試験結果を基に静的強度、疲労強度、衝撃強度、クリープ強度などを求め、それらに対する温度や形状などの影響を明らかにする。さらに許容応力、安全率の概念を導入して設計の指針を与える。

[林 邦夫]

梁、柱、軸

機械や構造物を構成する部材としてもっとも広く用いられるのは棒状の材料である。棒がその中心線に垂直な荷重のもとに曲げ作用を受ける場合、この棒を梁という。また長さ方向に圧縮荷重を受けるときは柱、ねじりを受ける場合を軸という。これらの部材に生ずる内力と変形を弾性学の理論に工学的近似を導入して設計に有用な形に整理する。変形に対する抵抗を表す剛性は材料特性と断面形状とにより与えられるが、その評価方法を示す。断面積に比較して長い柱の場合には、圧縮荷重がある限界値に近くなると急に横たわみが増大する現象がある。これは座屈とよばれ、柱の設計には十分注意すべき事項である。

[林 邦夫]

平板、円筒、球

機械や構造物の軽量化は、材料の節約のみならず、自動車や航空機のように動力を用いて運動するものでは性能の向上、運転経費の低減につながる。平板、円筒、球は軽量構造の基本であり、卵の殻のような殻構造はその代表である。これらの板部材がその板面に垂直な荷重を受けるときの曲げ、面内力による座屈の解明は、薄板構造の設計上不可欠である。また近年ガラス繊維や炭素繊維でプラスチックを補強した複合材料が工業材料として重用されているが、このような異方性をもつ複合材料の力学的性質の究明も重要である。

[林 邦夫]

組立構造物

機械や構造物は一般に平板や曲面板と、梁や柱とを結合した複雑な組立構造である。これは骨組構造、薄肉梁構造、平板構造、殻構造などに分類されるが、なるべく簡潔で、しかも構造の力学的挙動の本質を失わない解析法が必要である。要求される精度に応じて工学的近似を駆使し、実用的設計式が導かれる。これらの実用計算式は注意深い実験による裏づけを必要とする。

[林 邦夫]

有限要素法

複雑な形状や構造をもち、荷重や支持条件も多岐にわたる機械や構造物の応力、変形の解析の精度向上への要請の高まりと、20世紀中ごろに実用化されたコンピュータの性能向上とが生み出した近似数値解析法が有限要素法である。設計条件が厳しくなったことと、コンピュータの普及という時代的背景のもとに、マトリックス代数を介して、迅速で手際よく数値計算できるように解析手順を組織化し、最小限のモデル化で応力、変形を求められる有限要素法が急速に進歩し、材料力学の重要な一分野となっている。

 材料力学には以上列記した事項のほかに、機械加工に伴う材料の力学的挙動の解明や、実際の機械や構造物の応力や変形を実験的に求める技術の開発も、その重要な部門として含まれている。

[林 邦夫]

[参照項目] | 応用力学 | 材料試験 | 有限要素法

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Second Coming - Sairin

>>:  Material testing

Recommend

van Laer, P.

...On the other hand, Caravaggio, a native of Lom...

Ganzuke - Ganzuke

" crab Crab A sound change of "tsuke&quo...

Diffusion annealing - Diffusion annealing

...This process therefore takes a relatively long...

Dactylostalix ringens - Dactylostalix ringens

A small perennial plant of the orchid family. It i...

Anchovy fishing

...Other than that, oil is produced on the northe...

GI Bill of Rights

...In Japan, GIs were popular in the streets from...

Cirrata

...In addition to this, experiments have been con...

Amagasaki Mataemon

A townsman who was in charge of entering and leavi...

Retention - Sonryu

(noun) To remain; to leave behind; to set aside. ※...

Udegram (English spelling)

A city ruin in the northwestern Khyber Pakhtunkhwa...

Yongning County - Yongning County

…Famous for its specialties are mandarin oranges,...

Bipalium fuscatum (English spelling) Bipaliumfuscatum

...It is not particularly harmful. The black-spot...

Lecture (stage) - Koza

The name of a ritual implement used in Buddhist ce...

Photoreading

… [Reading] It is said that there are three stage...

Kenshun

Year of death: Enbun 2/Shohei 12.7.16 (1357.8.2) Y...