Lattice defects

Japanese: 格子欠陥 - こうしけっかん
Lattice defects

There is a wide range of regularity in the atomic arrangement in crystals such as metals, semiconductors, and ionic crystals. For example, the atomic arrangement in a crystal can be thought of as being like a structure in which go stones are neatly arranged on the lattice points of a go board. However, the atomic arrangement in real crystals is not perfect, but contains various imperfections and disorders. These are called lattice defects. The word "defect" sounds like it means a defective product. This is certainly true, but it is precisely because of the existence of lattice defects that crystals exhibit various interesting properties and are useful in practical terms. Lattice defects are classified into point defects, line defects, and planar defects depending on their spatial extent.

[Masahiro Koiwa]

Point Defects

Figure A shows schematics of various point defects. The basic point defects are atomic vacancies (a in Figure A; sometimes called vacant lattice points) where an atom that should be at a regular lattice point is missing, and interstitial atoms (b in Figure A ). The number of atomic vacancies increases with increasing temperature, and just below the melting point there is about one vacancy per 10,000 lattice points. The movement and diffusion of atoms in a crystal occurs when an atom adjacent to a vacancy moves into the vacancy's position. When a crystal is irradiated with high-energy neutrons, ions, or electrons, atoms in regular positions are ejected, creating atomic vacancies and interstitial atoms.

Foreign atoms (impurities) in a crystal are also a type of point defect. Atoms that are not much different in size from the atoms in the parent crystal are substitutional atoms (c in Figure A ), while atoms with a small atomic radius, such as hydrogen, carbon, nitrogen, and oxygen, are interstitial atoms (d in Figure A ). Compound defects that combine these elementary defects include divacancies (e in Figure A ) and complexes of impurity atoms and atomic vacancies (f in Figure A ).

[Masahiro Koiwa]

Linear Defects - Dislocations

When a tensile force is applied to a crystal, atoms slide along a specific plane, causing deformation. This deformation does not occur all at once across the entire slip plane, but rather, as shown in Figure B , a part of the slip plane slides, and the slipped part gradually spreads until it finally covers the entire slip plane. At the boundary between the slipped part and the part that has not yet slipped in Figure B (b), the arrangement of atoms is disrupted, and this part is called a dislocation. This dislocation is the edge line of an extra atomic plane, as shown in Figure C (a), and this type of dislocation is called an edge dislocation. The characteristic of an edge dislocation is that the dislocation line is perpendicular to the slip direction. Figure C (b) shows another major type of dislocation called a screw dislocation. In this case, the slip direction is parallel to the dislocation line. In this figure, if you rotate around the dislocation along the atomic plane, you will move to the next atomic plane with each rotation. In other words, the atomic plane spreads in a spiral shape in the crystal, so it is called a screw dislocation. When air is blown into soapy water from a thin glass tube to create bubbles of uniform diameter and then arranged on the surface of the liquid, two-dimensional bubble crystals are formed, among which edge dislocations are often found, as shown in Figure C (a). Dislocations are lattice defects that play an important role in the deformation and growth of crystals, and their behavior has been studied in detail using electron microscopes and other methods.

[Masahiro Koiwa]

Surface Defects

Most metallic materials actually used are polycrystalline bodies made up of many small crystal grains, and the boundary where two crystal grains meet (grain boundary) has a disordered atomic arrangement, which is a type of planar defect. A crystal can be seen as a stacking of atomic planes with a specific arrangement, which are stacked according to a certain rule, and stacking errors are planar defects called stacking faults. Furthermore, the surrounding environment of the atoms on the free surface of a crystal is different from that of the atoms inside the crystal, and the surface is also a type of planar defect. Planar defects have unique properties, such as the tendency for impurity atoms to gather.

[Masahiro Koiwa]

[Reference] | Vacancies | Lattice | Dislocations
Types of point defects (Fig. A)
©Shogakukan ">

Types of point defects (Fig. A)

Crystal slip and dislocations (Figure B)
©Shogakukan ">

Crystal slip and dislocations (Figure B)

Simple dislocation geometry (Fig. C)
©Shogakukan ">

Simple dislocation geometry (Fig. C)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

金属、半導体、イオン結晶などの結晶中における原子配列には広い範囲にわたる規則性がある。たとえば、碁盤の格子点にきちんと碁石を並べたような構造が結晶中の原子配列を表しているものと考えてよい。しかし、実在の結晶中の原子配列は完全無欠ではなく、各種の不完全性・乱れを含んでいる。これを格子欠陥とよぶ。「欠陥」というと、いかにも不良品という響きがある。確かにそうには違いないが、まさにその格子欠陥があるがために、結晶がいろいろ興味ある性質を示し、実用的にも有用となっている側面もある。格子欠陥はその空間的広がりに応じて、点欠陥、線欠陥、面欠陥に分類される。

[小岩昌宏]

点欠陥

図Aに各種の点欠陥を模式的に示した。正規の格子点にあるべき原子が抜けている原子空孔(図Aのa。これを空(くう)格子点という場合もある)と格子間原子(図Aのb)が基本的な点欠陥である。原子空孔の数は温度の上昇につれて増加し、融点直下では1万個の格子点に対し1個程度の割合である。結晶中での原子の移動・拡散は、空孔に隣接する原子が空孔の位置に移ることによりおこる。結晶を高エネルギーの中性子、イオン、電子で照射すると、正規の位置にある原子がはじき飛ばされて、原子空孔と格子間原子がつくられる。

 結晶中にある異種の原子(不純物)も点欠陥の一種である。母体結晶の原子とあまり大きさが変わらない原子は置換型原子(図Aのc)、水素・炭素・窒素・酸素など原子半径が小さい原子は侵入型原子(図Aのd)となる。これらの要素的な欠陥が結合した複合欠陥として、複空孔(図Aのe)、不純物原子と原子空孔の複合体(図Aのf)などがある。

[小岩昌宏]

線欠陥――転位

結晶に引張り力を加えたとき、特定の面に沿って原子がすべりあって変形がおこる。この変形は、すべり面全面にわたって一気におこるのではなく、図Bに示すように、すべり面の一部がすべり、そのすべった部分がしだいに広がっていって、ついにすべり面全面を覆う、という順序でおこる。図B(b)のすべった部分とまだすべっていない部分の境界では原子の配列が崩れているが、この部分を転位とよんでいる。この転位は、図C(a)に示すように余分に入った1枚の原子面の端の線になっており、この種の転位を刃(は)状転位とよんでいる。刃状転位の特徴は、転位線がすべり方向に垂直なことである。図C(b)はらせん転位とよばれる転位のもう一つの主要な型を示している。この場合はすべり方向が転位線に平行である。この図で、転位の周りを原子面に沿って回ると、1回転ごとに次の原子面に移る。すなわち、原子面がらせん状に結晶の中に広がっているので、らせん転位とよばれる。せっけん水の中に細いガラス管から空気を吹き出して、直径のそろった泡をつくり液面に並べると二次元的な泡の結晶ができるが、この中には図C(a)に示すようにしばしば刃状転位がみられる。転位は結晶の変形、成長に重要な役割を果たす格子欠陥であり、電子顕微鏡観察などによりその挙動が詳しく調べられている。

[小岩昌宏]

面欠陥

実際に用いられる金属材料の大部分は、多数の小さな結晶粒からなる多結晶体で、二つの結晶粒が相接する境界(結晶粒界)は原子配列が乱れており、面欠陥の一種である。結晶は、特定の配列をした原子面を一定に規則に従って積み重ねたものとみることもできるが、積み重ねの誤りは積層欠陥とよばれる面欠陥である。また結晶の自由表面にある原子は、周囲の環境が結晶内部にある原子と異なっており、表面も一種の面欠陥である。なお、面欠陥には、不純物原子が集まりやすいなど特異な性質がある。

[小岩昌宏]

[参照項目] | 空孔 | 格子 | 転位
点欠陥の種類〔図A〕
©Shogakukan">

点欠陥の種類〔図A〕

結晶のすべりと転位〔図B〕
©Shogakukan">

結晶のすべりと転位〔図B〕

単純な転位の幾何図形〔図C〕
©Shogakukan">

単純な転位の幾何図形〔図C〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Hyperlipidemia - Hyperlipidemia

>>:  Photon counting method

Recommend

Agricultural crisis (English spelling)

The phenomenon of agricultural depression is a re...

Nobutaka Tomita

?-1633 Azuchi-Toyotomi - A military commander in ...

Chinese Revolutionary Party

A secret revolutionary society organized by Sun Y...

Thērōn (English spelling) Theron

…In the Greek city-states of Sicily, the populati...

Time preference

The degree to which one prefers consuming in the p...

Kakuzan - Kakuzan

A Jodo sect monk in the early Edo period. He went...

Soot mold - soot mold

A disease in which black mold such as ascochyta gr...

Underwater flowers

These toys (gangu) are made by coloring and compr...

Dragon skewer - Dragon skewer

A scenic spot in Tosashimizu City, southwest of K...

Easter Monday

...In addition, there is a custom of eating eggs ...

molecular depression

…In this formula, ⊿ T is the magnitude of the fre...

Porter

…The form of capital was often in the form of phy...

lady's eardrop

...The flowers come in a wide variety of colors a...

Fuchu [town] - Fuchu

Located in Aki District, Hiroshima Prefecture, sur...

Spanish bayonet (English spelling)

...Most species are shrubs, but some species do n...