An n-th order determinant is a number that can be expressed by arranging n 2 numbers a ij (i, j = 1, 2, ..., n) in a square, and can be expanded into a polynomial of a ij . It is important to note that while an n-th order square matrix is a table of numbers arranged in a square, a determinant is a number. Simultaneous linear equations with two unknowns x and y [Tsuneo Kanno] Japanese mathematician Seki Takakazu also developed a theory of determinants in his Kaifudai no Ho (Kaifukudai Problems) in 1683 (Tenwa 3). A hidden problem is a problem that results in simultaneous equations with two or more unknowns. When the problem becomes complicated, it is not easy to set up an equation with only one unknown, x. In this case, several equations are made using auxiliary unknowns such as y and z, and from these the auxiliary unknowns are eliminated to create an equation with only x. Determinants are used in this elimination process. To solve this determinant, the so-called Sallas method is used in the case of three unknowns, and a similar method is used for four or more unknowns. However, there was an error in the method of solving it with five or more unknowns, which has been corrected in later generations. [Shinichi Oya] Definition of Determinant n-th order square matrix with complex numbers (including real numbers) aij as components Basic properties of determinantsThe following basic properties result from the definition of a determinant: (1) The determinant of a square matrix A is equal to the determinant of A's transpose matrix t A. In other words, | t A| = |A|. From this property, what holds true for the rows of the determinant of a square matrix A also holds true for the columns, and vice versa. (2) The element a ij in one row of a square matrix A, say the i-th row, is the sum of two numbers a ij =a′ ij +a″ ij (j=1,……,n) (3) The determinant of the matrix obtained by multiplying the elements of one row of a square matrix A by c is c times |A|. That is, (4) The determinant of the matrix obtained by swapping two rows of a square matrix A is -|A|. That is, (5) The determinant |A| of a square matrix A with two equal rows or columns is 0. Also, from (2), (3), and (5) For matrix multiplication and determinant multiplication, Determinant expansion formula Let A ij be the (n-1)th order square matrix obtained by removing the i-th row and j-th column of n-th order square matrix A from A. Multiplying the determinant of A ij by (-1) i+j , ij = (-1) i+j |A ij | is called the (i, j) cofactor of matrix A. Using the basic properties, the following expansion theorem can be obtained. For n-th order square matrix A, [3] |A| = a i1 ã i1 + a i2 ã i2 + ... + a in ã in Furthermore, [3] can be regarded as an identity for n 2 a ijs , and since ã i1 , ã i2 ,……, ã in do not include a i1 , a i2 ,……, a in , by using (5), we obtain the following. [5] a k1 ã i1 +a k2 ã i2 +……+a kn ã in =0 [6]a 1k ã 1j +a 2k ã 2j +……+a nk ã nj =0 Furthermore, from this equation and [5] and [6], we obtain Cramer's rule, which is a generalized method for solving simultaneous linear equations. [Tsuneo Kanno] MinorLet A = (a ij ) be any (m, n) matrix. For a natural number p not exceeding m and n, take any p rows and p columns of matrix A, and create a pth order square matrix consisting of p2 elements at the intersections, for example, as follows:
In general, the highest degree of a nonzero minor of an (m, n) matrix A is equal to the rank of the matrix A. Using this result, the rank of a matrix A can be obtained by calculating its minor. [Tsuneo Kanno] "Introduction to Linear Algebra" by Masahiko Saito ("Basic Mathematics 1", 1966, University of Tokyo Press) " "Matrices and Determinants" by Ichiro Satake (1958, Shokabo) " "Linear Algebra" by Fumiyuki Terada ("Science Library: Mathematics for Science and Engineering 1", 1974, Science Press) ©Shogakukan "> Salas' Method Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
n次行列式とは、n2個の数aij(i, j=1, 2,……, n)を正方形に並べた記号で表される数で、aijの、ある多項式の形に展開できる。n次正方行列(マトリックス)が正方形に並べられた数表であるのに対し、行列式は数であることに注意する必要がある。 二つの未知数x、yの連立一次方程式 [菅野恒雄] 日本の和算家関孝和(せきたかかず)も1683年(天和3)『解伏題之法』において行列式論を展開している。伏題とは二元以上の連立方程式となる問題である。問題が複雑になれば、一つの未知数xだけでは容易に方程式がたてられない。この場合、補助の未知数y、zなどを用いていくつかの方程式をつくり、これから補助の未知数を消去して、xだけの方程式をつくる。この消去にあたって行列式が用いられるのである。この行列式を解くには、三元の場合にはいわゆるサラスの方法を用い、四元以上の場合も、これに準じた方法を用いた。しかし五元以上の解き方には誤りがあったので、後世、これは訂正されている。 [大矢真一] 行列式の定義複素数(実数の場合を含む)aijを成分とするn次正方行列 行列式の基本性質行列式の定義式から次の基本性質が出る。 (1)正方行列Aの行列式とAの転置行列tAの行列式は等しい。つまり|tA|=|A|である。この性質から、正方行列Aの行列式の、行について成り立つことは列についても成り立ち、また、この逆も正しい。 (2)正方行列Aの一つの行、たとえば第i行の成分aijが二つの数の和 (3)正方行列Aの一つの行の成分を、c倍して得られる行列の行列式は|A|のc倍である。つまり (4)正方行列Aの二つの行を入れ替えて得られる行列の行列式は-|A|である。つまり (5)二つの行または列が等しい正方行列Aの行列式|A|は0である。 また、(2)、(3)、(5)から 行列の積と行列式の積については、 行列式の展開公式n次正方行列Aの第i行と第j列をAから取り去ってできる(n-1)次正方行列をAijとする。Aijの行列式に(-1)i+jを掛けたものãij=(-1)i+j|Aij|を行列Aの(i, j)余因子という。基本性質を用いて次の展開定理が得られる。n次正方行列Aに対し さらに〔3〕はn2個のaijの恒等式とみなされ、ãi1, ãi2,……, ãinはai1, ai2,……, ainを含まないから、(5)を用いると、次を得る。 〔5〕ak1ãi1+ak2ãi2+……+aknãin=0 〔6〕a1kã1j+a2kã2j+……+ankãnj=0 なお、この式と〔5〕〔6〕から、連立一次方程式の解法の一般化であるクラメルの公式が出る。 [菅野恒雄] 小行列式A=(aij)を任意の(m, n)行列とする。mとnを超えない自然数pに対し、行列Aの任意のp個の行とp個の列をとり、その交点にあるp2個の成分からなるp次の正方行列を、たとえば次のようにつくる。
一般に(m, n)行列Aの0でない小行列式の最高次数は行列Aの階数(ランク)に等しい。この結果を用いて、行列Aの階数を小行列式の計算で得ることができる。 [菅野恒雄] 『斎藤正彦著『線型代数入門』(『基礎数学1』1966・東京大学出版会)』▽『佐武一郎著『行列と行列式』(1958・裳華房)』▽『寺田文行著『線形代数』(『サイエンスライブラリ 理工系の数学1』1974・サイエンス社)』 ©Shogakukan"> サラスの方法 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Matrix bookkeeping - Gyoretsuboki (English spelling) matrix bookkeeping
>>: Matrix - Gyoretsu (English spelling) matrix
…In the film industry, which needed to make a new...
This is an old town in Minamitsuru County in south...
…As a result, conferences on American routes are ...
Born: February 15, 1861. Gainsborough [Died] March...
… [Yukio Taniguchi]. … *Some of the terminology t...
French physicist. Born in Paris. Widely known for...
A contract between a copyright holder and a publi...
Haiku poet. Born in Hofu Town, Yamaguchi Prefectu...
Chinese female lawyer and politician. Born in Jia...
...The clue to understanding the evolution of til...
...A group of succulents in the family Vulaceae, ...
An academic society is an organization, group, or...
The capital of the state of Michoacan in southwest...
When an animal's body is made up of repeated ...
→ Ammonolysis Source: Shogakukan Encyclopedia Nip...