Also called an inverse mapping. When a function f from A to B is bijective, then for y ∈ B , x ∈ A is determined such that f ( x )= y , and by associating this x with y , the function x = g ( y ) from B to A is determined. This g is called the inverse function of f . In the case of general functions, for y ∈ f ( A ), there is an x such that f ( x )= y , but this is not necessarily unique, so even if you try to associate y with x , it will end up being a multi-valued function. In this case, you can consider something like a Riemann surface and make f ( A ) multiple times so that the inverse function can be considered as a single-valued function, or, more elementary, you can limit the domain of definition of f . For example, in the function y = x² from real numbers R to R , f ( R ) is the positive half-line R + , and within that range, x has two values, ± √y . If we restrict the domain to R + , we obtain a bijection from R + to R + , and so we obtain the inverse function x = √y . To consider the inverse function that produces ± √y , we can double R + , in other words, consider the space where a line is folded in half, and from there we can think of it as a function to R. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
逆写像 inverse mappingともいう。 A から B への関数 f が全単射のときは,y∈B について f(x)=y となる x∈A が定まるわけなので,y にこの x を対応させることによって,B から A への関数 x=g(y) が定まる。この g を f の逆関数という。一般の関数の場合には,y∈f(A) について,f(x)=y となる x があるが,これが一意的とかぎらないので,y から x を対応させようとしても,多価関数になってしまう。この場合には,リーマン面のようなものを考えて,f(A) のほうを何重かにして一価関数としての逆関数が考えられるようにするか,初等的には f の定義域を制限しておくなどする。たとえば,実数 R から R への関数 y=x2 では f(R) は正の半直線 R+ ,その範囲でも x は ±√y の2つがあるが,定義域を R+ に制限すると,R+ から R+ への全単射が得られるので,逆関数 x=√y が得られる。 ±√y の出てくる逆関数を考えるには,R+ を2重にして,つまり直線を2つ折りにした空間を考えると,そこから R への関数と考えることができる。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Guest house - ke-hu; k`o-hu
Waste generated as a result of industrial activit...
A volcanic island located in the southwest Pacific...
Shipping management can be broadly divided into (1...
A marine fish belonging to the family Gadidae of ...
A perennial plant of the family Botryllaceae, foun...
...areas in the upper atmosphere where there is a...
A god who appears in the Kojiki and Nihon Shoki. T...
...In medieval soul rituals, they were generally ...
A book by Guo Maoqian of the Northern Song Dynast...
〘noun〙 Celebrating in advance. Source: The Selecte...
...The nests of the Curassowicz family are made f...
…During World War I, the British tried to purchas...
〘 noun 〙 The gathering of everything. The gatherin...
It is a psychological theory based on Marxism and ...
… A well-organized bureaucratic organization was ...