...Increasing and decreasing functions are collectively called monotonic functions. In particular, when f ( x1 )< f ( x2 ) or f ( x1 ) > f (x2) for as long as x1<x2, f(x ) is said to be strictly monotonically increasing or decreasing, respectively, and these cases are collectively called strictly monotonic. The monotonicity of a function can also be described for a portion of its domain. ... From [Differentiation]...If f ′( x ) ≧ 0 in a given interval, then f ( x ) is monotonically increasing in that interval. In particular, if f ′( x ) > 0 is always true in that interval, then f ( x ) is strictly monotonically increasing. Also, if f ′( x ) ≦ 0 in a given interval, then f ( x ) is monotonically decreasing in that interval. ... *Some of the terminology explanations that mention "strictly monotonically increasing" are listed below. Source | Heibonsha World Encyclopedia 2nd Edition | Information |
…増加関数と減少関数とを総称して単調関数という。とくに,x1<x2なるかぎりf(x1)<f(x2),またはf(x1)>f(x2)となるとき,それぞれf(x)は狭義単調増加,または狭義単調減少であるといい,これらの場合を総称して狭義単調であるという。関数の単調性は,その定義域の一部の区間についていうこともある。… 【微分】より…ある区間でf′(x)≧0ならばf(x)はその区間で単調増加である。とくに,その区間でつねにf′(x)>0ならばf(x)は狭義単調増加である。また,ある区間でf′(x)≦0ならばf(x)はその区間で単調減少である。… ※「狭義単調増加」について言及している用語解説の一部を掲載しています。 出典|株式会社平凡社世界大百科事典 第2版について | 情報 |
>>: Strictly monotonically decreasing
One of the miscellaneous festivals in the calenda...
…the highest educational institution of the navy,...
A woman who worked at hot spring resorts and bath...
…The most representative of these dolls are still...
A dish topped with kudzu paste. Also called kuzuhi...
…[Sumihiko Hatsushima]. … *Some of the terminolog...
Italian poet. Born to a wealthy family in Alfonsi...
…However, when Frederick II the Great of Prussia ...
It is used in two senses: (1) the grammar of spoke...
…In honor of this wind, the Mediterranean climate...
… [Yoshio Okada] [Western] In English it is calle...
Generally, it refers to public capital stock (the...
…The direct work of the deputy governor was done ...
The Law on the Dissolution of Perpetual Property ...
Among temperate climates, this is a relatively hu...