Electromagnetic waves with wavelengths shorter than 0.01 angstroms (Å), in other words, with photon energy (hν) of several hundred kiloelectronvolts (keV) or more, are called gamma rays. The same light has different names depending on its wavelength, such as radio waves, infrared rays, visible light, ultraviolet rays, X-rays, and gamma rays, which depend on the source or origin when it appeared in the history of physics. In 1896, Becquerel and Curie discovered that there are three components of radiation emitted from radioactive materials, which they called α (alpha) rays, β (beta) rays, and γ rays. Of these, γ rays, which have no electric charge, were found to be electromagnetic waves with extremely short wavelengths. γ rays, which accompany the decay of radioactive elements, are emitted when the resulting nucleus falls from an excited state to a lower state or ground state, and their energy hν (h is Planck's constant, ν is the frequency) is equal to the energy difference between the transition states. To artificially create γ rays, electrons are accelerated in something like a synchrotron accelerator and hit a substance, such as lead. The electrons release part of their kinetic energy in the form of radiation through bremsstrahlung. If the energy of the accelerated electrons is low, continuous X-rays are obtained, and if it is high, continuous γ rays are obtained. In addition, if accelerated electrons are irradiated with a laser beam, they can be converted into light with a short wavelength by Compton scattering, and high-energy γ rays can be obtained. γ rays have a higher penetrating ability than other types of radiation, so they are widely used in medicine, material testing, and other fields. Cobalt-60 ( 60 Co), produced in nuclear reactors as a strong radioactive source, is widely used because it is not as expensive as radium. Cobalt-60 emits 0.3 MeV (MeV is 1 million electron volts) beta rays and turns into nickel-60, which emits strong gamma rays of 1.33 MeV and 1.17 MeV. It is used as a useful tool to study the structure of atomic nuclei and elementary particles by irradiating them with high-energy gamma rays with extremely short wavelengths. [Mitsuo Muraoka] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
波長が0.01オングストローム(Å)よりも短い、すなわち光量子のエネルギー(hν)でいえば数百キロ電子ボルト(keV)以上の電磁波をγ線とよんでいる。波長の大きさの順に、電波、赤外線、可視光線、紫外線、X線、γ線と、同じ光であっても波長によって名前が異なっているが、それは物理学の歴史に現れたときの出所や由来によるものである。 1896年にベクレルとキュリーによって、放射性物質から出てくる放射線には三つの成分があることが発見され、それぞれα(アルファ)線、β(ベータ)線、γ線とよんだ。そのうち電荷をもたないγ線がきわめて波長の短い電磁波であることがわかった。放射性元素の崩壊に伴うγ線は、生成核が励起状態から、より低い状態または基底状態に落ちるときに発せられるもので、そのエネルギーhν(hはプランク定数、νは振動数)は遷移状態間のエネルギー差に等しい。人工的にγ線をつくるには、電子をシンクロトロン加速器のようなもので加速し、それを物質、たとえば鉛に当てる。電子は運動エネルギーの一部を制動放射によって放射の形で放出する。加速電子のエネルギーが低ければ連続X線、高ければ連続γ線が得られる。また加速電子にレーザー光線を照射すると、コンプトン散乱によって波長の短い光に変換することができ、高エネルギーγ線を得ることができる。γ線は透過能力が他の放射線に比べて高いので、医療や材質検査などに広く用いられる。強い放射線源として原子炉でつくられるコバルト60(60Co)がラジウムのように高価ではないので一般に広く用いられる。コバルト60は0.3MeV(MeVは100万電子ボルト)のβ線を出してニッケル60となり、1.33MeVおよび1.17MeVの強いγ線を出す。波長のきわめて短い高エネルギーのγ線を原子核や素粒子に照射して、その構造を研究するために有用な手段として用いられている。 [村岡光男] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
A document that conceptually describes the arrange...
…Belgian Catholic missionary known for his devote...
... Ornamental poppies have hairs on their stems,...
...Artificial insemination, which was once used p...
…After that, the phase diagrams of all kinds of a...
…Committee of the International Socialist Confere...
...The main crime-deviation theories based on thi...
It is a type of puppet theater, Kabuki, and Kyogen...
[1] 〘noun〙① one direction; one quarter; a certain ...
…[Nitta Aya]. . . *Some of the terminology that m...
A crocodile of the Alligatoridae family, order Cr...
A collection of hauta (traditional Japanese folk s...
A Japanese religious leader and the founder of Aum...
[ I ] Cyanogen: (CN) 2 (52.03). Also called dicya...
…Although he was born in New York, he spent about...