Countable sets

Japanese: 可算集合 - かさんしゅうごう
Countable sets

A finite set is a set in which all elements can be numbered by natural numbers, such as a 0 , a 1 , ..., a n , .... It is also called a numberable set. If n is a natural number, then the elements of a finite set with n elements can be numbered from zero to (n-1), so finite sets are also countable sets. A set with all natural numbers as elements, that is, the set consisting of all natural numbers, is an infinite set, but since the elements themselves can be thought of as their own numbers, it is also a countable set. Furthermore, the set of all integers ..., -n, ..., -2, -1, 0, 1, 2, ..., n, ...
can be rearranged as 0, 1, -1, 2, -2, ..., n, -n, .... If we number the integers from left to right as 0, 1, 2, 3, 4, ..., and generally number n (≧1) as (2n-1) and -n as 2n, we can number the whole set of integers with natural numbers. Therefore, the set of all integers is a countable set. If we number the fraction m/n as {(m+n)(m+n+1)/2}+m, where m and n are integers, then the whole set of m/n is also a countable set. Since rational numbers are expressed as the fractions mentioned above, the whole set of rational numbers is also a countable set. However, the whole set of real numbers, which consists of irrational numbers and rational numbers, is not a countable set. Cantor proved this using a method of proof called the diagonal argument. As a result, it was found that there are infinite sets with different numbers of elements. A countable set is an infinite set with the smallest number of elements. An infinite set that is not a countable set is called an uncountable set. Cantor also proved that there exist an infinite number of uncountable sets, each with a different number of elements.

[Toshio Nishimura]

[Reference item] | Set | Infinite set

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

そのすべての元にa0,a1,…,an,…のように、自然数によって番号をつけられる集合のことである。可付番集合ともいう。nを自然数とすると、n個の元をもつ有限集合の元には、ゼロ番目から(n-1)番目まで番号をつけられるので、有限集合も可算集合である。すべての自然数を元とする集合、すなわち自然数全体からなる集合は、無限集合であるが、この元自身を自分自身の番号と考えることができるから可算集合である。さらに、整数の全体
  …,-n,…,-2,-1,0,1,2,…,n,…
は、0,1,-1,2,-2,…,n,-n,…と並べ換えることができる。左から順に0,1,2,3,4,…番目と番号をつけ、一般にn(≧1)に(2n-1)の、-nに2n番目の番号をつけると、整数全体に自然数で番号をつけることができる。したがって整数全体の集合は可算集合である。mとnを整数としたとき、分数m/nに{(m+n)(m+n+1)/2}+mという番号をつければ、m/nの全体も可算集合である。有理数は前記の分数として表されるので、有理数の全体も可算集合である。しかし、無理数と有理数からなる実数の全体は可算集合ではない。カントルはこのことを対角線論法という証明方法によって証明した。この結果、元の個数の異なる無限集合があることがわかった。可算集合は元の個数が最小の無限集合である。可算集合でない無限集合を非可算集合という。互いに元の個数の異なる無限個の非可算集合が存在することも、カントルによって証明されている。

[西村敏男]

[参照項目] | 集合 | 無限集合

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Hyperacidity - Hyperacidity

>>:  Hanayama Temple

Recommend

Rhynchogale melleri (English spelling) Rhynchogalemelleri

...Most species are diurnal, but some, such as th...

Joachim von Ribbentrop

A diplomat for Nazi Germany. The son of a militar...

Diabelli Variations - Diabelli Variations

The full title is Thirty-three Variations for Pian...

Osteopathy - Osteopathy

It is a type of therapy for correcting bone abnor...

《Crónica mexicayotl》 (English spelling)

…Grandson of Aztec Emperor Moctezuma II. His work...

Botany - Botany

A branch of biology that studies plants. Humans h...

Shiranui Noriemon - Shiranui Noriemon

1801-1854 A sumo wrestler from the late Edo perio...

Koryo [town] - Koryo

An old town in Hikawa District, Shimane Prefecture...

Changwon

An industrial city in the southern part of South G...

Death Instinct - Todestriebe [Germany]

S. Freud's term. More precisely, the "dea...

《Islendingabók》(English spelling)

… He was from a distinguished family and was educ...

Aton

A sun god in Egyptian mythology. The name Aton mea...

Kao Souhou - Kao Souhou

…The Han Dynasty method of divination, that is, t...

névé (English spelling) neve

…This kind of snow has intermediate properties be...

"Kenakaki" - Kanenakaki

...The name was derived from the fact that the fa...