The different molecular forms corresponding to each potential minimum are called rotational isomers. Molecules containing σ bonds such as CC, CN, and CO can undergo intramolecular rotation around these bond lines, but this is not completely free rotation and there are several potential minimum states. For example, in 1,2-dichloroethane ClCH 2 -CH 2 Cl, there are two types of rotational isomers: one in which the two Cl atoms are on opposite sides due to intramolecular rotation around the CC bond (anti-form), and one in which it is rotated 120 degrees from that (gauche-form). This is shown in the Newman projection as follows. In the gas and liquid state of 1,2-dichloroethane, anti- and gauche-form molecules exist together, but in crystals, only anti-form molecules exist. In 1,1,2,2-tetrabromoethane Br 2 CH-CHBr 2 , the anti- and gauche-forms are obtained as separate crystals. If there are many rotatable bonds such as CC, CN, and CO within a molecule, the number of possible rotational isomers will be extremely large. [See other terms] Conformation Source: Morikita Publishing "Chemical Dictionary (2nd Edition)" Information about the Chemical Dictionary 2nd Edition |
それぞれのポテンシャル極小に相当する異なる分子形態を回転異性という.C-C,C-N,C-Oなどのσ結合を含む分子は,これらの結合線を軸として分子内回転を起こすことができるが,これは完全な自由回転ではなく,ポテンシャル極小の状態がいくつか存在している.たとえば,1,2-ジクロロエタンClCH2-CH2Clにおいては,C-C結合を軸とする分子内回転により,二つのCl原子が反対側にきた状態(アンチ形)と,それから120°回転させた状態(ゴーシュ形)との2種類の回転異性体が存在する.これをニューマン投影式で示すと次のようになる.1,2-ジクロロエタンの気体,液体においては,アンチ形の分子とゴーシュ形の分子が混在しているが,結晶においては,アンチ形の分子のみが存在している.1,1,2,2-テトラブロモエタンBr2CH-CHBr2においては,アンチ形とゴーシュ形が別々の結晶として得られている.分子内に回転できるC-C,C-N,C-Oなどの結合が多く存在すれば,それに従って考えられる回転異性体の数もきわめて多くなる.[別用語参照]立体配座 出典 森北出版「化学辞典(第2版)」化学辞典 第2版について 情報 |
<<: Rotational movement - Kaitenido
>>: Rotary Compressor - Kaiten Ashukuki
...After being a buyer of land, he became a shins...
Also called clapping or opening hands. A method of...
A village in Higashitonami County in the southwest...
…The inner coast is below sea level and contains ...
A former town in Sawa District, southeastern Gunma...
A butterfly belonging to the family Hesperiidae i...
...a concept in administrative law. One of the ad...
Italian conductor. Born in Parma on March 25th. S...
Needless to say, at the time, the idea of a hum...
...refers to acts of a state that have a highly p...
It is the most populous country in Central Americ...
...In the small and large intestines, strong peri...
A mathematician from the Yuan Dynasty in China. Da...
…They have 4 to 12 prongs, and were originally fo...
...However, you can confirm their existence by th...