Principle of Superposition - The Principle of Superposition

Japanese: 重ね合せの原理 - かさねあわせのげんり
Principle of Superposition - The Principle of Superposition

If there exists a phenomenon in which a certain physical quantity takes the value a ( t ) at time t , and another phenomenon in which it takes the value b ( t ), and if there also exists a phenomenon whose value is the sum λa ( t ) + μb ( t ) obtained by multiplying these quantities by arbitrary coefficients λ and μ and adding them together, then the principle of superposition is said to hold for these phenomena. Solutions to linear equations follow this principle. For example, this principle holds for light waves. Therefore, if light from a light source P is incident on a point on a screen,

( t is time, A , T , α are constants), there is a P or another Q

( B and β are also constants), the point

This causes the following vibration of light. At this time, if the phases of the two waves are the same (i.e. α = β), the superposition of the two waves will have an amplitude A + B , meaning that they reinforce each other. If β = α + 180°, the superposition will have an amplitude | A - B |, meaning that they destructively reinforce each other. Superposition that causes this type of constructive and destructive reinforcement is said to be coherent. In contrast, incoherent superposition occurs when α and β are not constants but change randomly over time. For example, when α and β are 0 degrees or 180 degrees, the amplitude of the superposition will fluctuate randomly, becoming A + B or | A - B |. The strength of the wave is proportional to the square of the amplitude, so ( A ± B ) 2 = A 2B 2 ±2 AB
will fluctuate between . If the fluctuations are so fast that only the average value can be observed, the ±2 AB terms will not be visible, and the strength of the superimposed waves will simply appear to be the sum of A2 , the strength when only a is present, and B2 , the strength when only b is present. In this case, no constructive or destructive interference occurs, and the waves are called incoherent. The principle of superposition can also be applied to functions of spatial coordinates, or more broadly, functions of time and spatial coordinates. The principle of superposition applies almost generally to wave motion. For example, if a long string is stretched taut and swung at the left end, a wave will travel from there to the right end. If that wave is

( x is the length measured from the left end along the string, t is time. The wave period is T and the wavelength is λ.) At the same time, the right end is also moved, and a wave with the same amplitude as a moves in the opposite direction is generated.

When this happens, the result of the superposition

This is a wave in which the shape of the string's vibration does not change over time, and is called a standing wave. Waves in which the principle of superposition does not hold are called nonlinear waves.

[Hiroshi Ezawa]

"Mechanics by Hiroshi Ezawa (2005, Nippon Hyoronsha)"

[Reference] | Phase | Linearity

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

ある物理量が時刻tat)という値をとる現象があり、またbt)という値をとる現象があるとき、それぞれに任意の係数λ、μを掛けて加えた和λat)+μbt)を値とする現象も存在するなら、これらの現象に対して重ね合せの原理が成り立つという。線形な方程式の解は、この原理に従う。たとえば、光の波に対しては、この原理が成り立つ。それゆえ、光源Pからの光がスクリーン上の1点で

のように振動しているとき(tは時間、AT、αは定数)、そこにPあるいは別のQから

のように振動する光を当てると(Bとβも定数)、その点に

という光の振動がおこる。このとき、二つの波の位相がそろっていれば(すなわちα=βなら)二つの波の重ね合せは振幅ABをもつことになり、つまり、互いに強め合う。もしβ=α+180゜なら重ね合せは振幅|AB|をもち、つまり弱め合う。このような強め合い、弱め合いをおこす重ね合せは干渉性があるという。これに対して非干渉性の重ね合せは、αとβが定数でなく時間とともに乱雑に変わる場合におこる。たとえば、αとβが0度になったり180度になったりすると、重ね合せの振幅はABになったり|AB|になったり乱雑に変動する。波の強さは振幅の2乗に比例するので
  (A±B)2A2B2±2AB
の間を変動することになる。その平均値しか観測されないくらい変動が速ければ±2ABの項はみえず、重ね合わせた波の強さはaだけがあったときの強さA2bだけのときの強さB2の単なる和にみえる。この場合、強め合いも弱め合いも全くおこらないため、非干渉性の波という。重ね合せの原理は空間座標の関数、あるいは広く時間と空間座標との関数に対しても同様に考えられる。波動に対しては、ほぼ一般に重ね合せの原理が成り立つ。たとえば、長い紐(ひも)をぴんと張って左端を振ると、そこから右端へと波が伝わっていく。その波が

の形であったとする(xは紐に沿って左端から測った長さ、tは時間。波の周期がT、波長がλ)。同時に右端も振って、aの振幅が同じで反対向きに進む波

をおこすと、重ね合せの結果

となる。これは紐の振動の形が、時間とともに変わらない波で、定常波とよばれている。重ね合せの原理が成り立たない波動は非線形波動とよばれる。

[江沢 洋]

『江沢洋著『力学』(2005・日本評論社)』

[参照項目] | 位相 | 線形性

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  pile of things

>>:  Layered

Recommend

Blue telephone

〘 noun 〙 A type of public telephone, commonly know...

Fault-tolerant system

A computer system that does not cause a failure as...

Synopsis

...In the talkie era, the problem of dialogue to ...

Neptis pryeri (English spelling)

…[Takakura Tadahiro]. … *Some of the terminology ...

Treaty of Stralsund - Treaty of Stralsund

The Treaty of 1370 was signed in Stralsund (now St...

Uchigami - Uchigami

…In the modern Meiji government, instead of the E...

Vacuum distillation

Distillation under reduced pressure. Generally, th...

additive number theory

...After that, research into the distribution of ...

Support - Fuyou

Assistance for those who cannot support themselves...

Kim Yuk

1580‐1658 An enlightened politician and scholar of...

Tanaka Hisashige

An engineer from the end of the Edo period to the...

praktische Rationalisierung (English) praktische Rationalisierung

According to him, before the emergence of rationa...

primitive streak

…The method of gastrulation in the cephalochordat...

Sintering

When fine powder is heated to high temperatures, ...

Fleischer, R.

…American animation brothers who brought popular ...