Analytical functions

Japanese: 解析関数 - かいせきかんすう
Analytical functions

If a complex function f(z) on a region D of the complex plane is differentiable at each point near a point c in D, the function is said to be regular at c. In this case, a Taylor expansion can be done near c, as follows:
f(z)=c 0 +c 1 (z-c)+c 2 (z-c) 2
+……+c n (z-c) n +……
Conversely, when a function can be expressed as a power series of this form, the function is said to be analytical at point c, and a function that is analytical at each point in the domain D is called an analytic function in D. Now, for z where the power series on the right-hand side converges, the function represented by the series can be differentiated any number of times. Therefore, regularity and analyticity are equivalent near point c.

[Haruo Sunouchi]

Analytic Connection

Given a regular function f 1 (z) on a domain D 1 and a regular function f 2 (z) on D 2 , and f 1 (z) = f 2 (z) on a domain D 0 included in D 1 ∩ D 2 (the intersection of D 1 and D 2), there exists a regular function f 1 (z) = f 2 (z) on D 1D 2 (the union of D 1 and D 2 ).

The fact that is determined can be seen from the identity theorem of holomorphic functions. In this case, F(z) is said to be an analytic continuation of f 1 (z) (or f 2 (z)). Now, starting with a holomorphic function f(z) on domain D, the function finally obtained by repeatedly performing analytic continuation is called an analytic function. In this case, analytic continuation is not possible beyond the boundaries of analytic functions. When a real function of real variables can be expanded by Taylor expansion, the function is said to be real analytic. Real analytic functions can be extended to analytic functions of complex variables. Therefore, real analytic function theory can be handled in a unified manner within function theory.

[Haruo Sunouchi]

[Reference] | Function theory | Taylor expansion

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

複素平面の領域D上の複素関数f(z)が、D内の点cの近くの各点で微分可能なとき、関数はcにおいて正則であるという。このとき、cの近くでテーラー展開ができて、
  f(z)=c0+c1(z-c)+c2(z-c)2
     +……+cn(z-c)n+……
の形で表せる。逆に、関数がこの形の整級数で表せるとき、関数は点cで解析的であるといい、領域D内の各点で解析的な関数をDでの解析関数という。さて、右辺の整級数が収束するようなzでは、級数の表す関数は何回でも微分可能となる。したがって、点cの近くでは正則性と解析性は同値である。

[洲之内治男]

解析接続

領域D1上で正則な関数f1(z)と、D2上で正則な関数f2(z)が与えられ、D1∩D2(D1とD2の共通部分)に含まれるある領域D0上でf1(z)=f2(z)となるとき、D1∪D2(D1、D2の和集合)上に一つの正則関数

が決まることは正則関数の一致の定理よりわかる。このとき、F(z)はf1(z)(またはf2(z))の解析接続であるという。いま、領域D上の正則関数f(z)から始めて、解析接続を次々に繰り返して、最終的に得られる関数を解析関数という。このとき、解析関数の境界を越えて解析接続はできない。実変数の実関数がテーラー展開できるとき、その関数は実解析的という。実解析的な関数は複素変数の解析関数に拡張できる。したがって実解析的な関数論は関数論のなかで統一的に取り扱うことができる。

[洲之内治男]

[参照項目] | 関数論 | テーラー展開

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Analytical Geometry

>>:  Analysis

Recommend

Chintz

...Imitations made in Japan are called "Japa...

lost sheep

…After the early Christian era, such shepherd ima...

Meitner

Austrian (Jewish) nuclear physicist. Born in Vien...

D'Ancona, U. (English spelling) DAnconaU

…He is especially known for his research on mathe...

Charles François Dumouriez

1739‐1823 A general during the French Revolution. ...

Okudzhava (English spelling) Bulat Shalvovich Okudzhava

Russian poet. Born in Moscow. After serving as a ...

Merienda

…All the cuisines share the common elements of ol...

Base level of erosion

...If no new relief is produced by internal proce...

Variables - Transformation

A letter that represents a quantity that can vary...

Settsushiki - Settsushiki

A local government office in the ancient Ritsuryo...

Toki Yasuyuki

Year of death: 11th October 6th, 1404 (11th Novemb...

Mount Hakodate

A mountain located in the southwest of Hokkaido, ...

parka

…In Japan, it is commonly called windyakke (deriv...

estoppel in pais (English spelling)

…Estoppel is a legal principle in the Anglo-Ameri...

Arslan Family - Arslanke

...A sect derived from the Ismaili sect in Syria ...