Acoustics

Japanese: 音響学 - おんきょうがく(英語表記)acoustics
Acoustics

A field of study that studies the fundamentals and applications of sound generation, propagation, and detection. The history of acoustics dates back to the Greek era, with Pythagoras' mathematical research into the musical scale. However, it was not until the 17th century that serious research into acoustics began. First, Mersenne studied the vibration of strings, and was the first to measure the speed of sound in air. Meanwhile, Newton believed that the speed of sound was determined by the properties of the medium,

He theoretically showed that the equation can be given by: Around the same time, Chladni investigated the two-dimensional vibration of a plate and discovered the Chladni diagram. In the 19th century, Rayleigh, Helmholtz and others largely completed the mathematical theory of classical acoustics. Meanwhile, Helmholtz published his theory of hearing, opening up the field of physiological acoustics. The rapid progress in electrical engineering and electronics since the turn of the 20th century gave rise to the large field of electroacoustics, which remains at the heart of modern acoustics to this day. Acoustics is also closely related to other fields of science and engineering, such as architectural acoustics, underwater acoustics and psychoacoustics, and is constantly developing. We will briefly introduce a few examples.

[Yoshio Hiki]

Electroacoustics

This is a field that studies how sound vibrations and electrical signals are converted into each other using transducers such as microphones and speakers, and how sound can be amplified, transmitted, recorded, and played back using electrical and electronic engineering methods. The range at which sound can directly reach a medium is extremely limited, and it quickly disappears. Electroacoustics not only compensates for these shortcomings and enriches our lives, but also serves as an effective means of conducting basic research into sound. Another achievement is the generation of high-frequency ultrasonic waves that were impossible to generate using traditional mechanical methods, and this is widely used in basic science, industry, and medicine. For example, ultrasonic flaw detection is used to detect defects in materials, and ultrasonic diagnosis and treatment of the human body are major applications.

[Yoshio Hiki]

Physiological Acoustics

A field that studies hearing and speech. Research into hearing began with anatomical research into the ear, and its dynamic functions have been clarified. According to this, sound detected as vibrations of the eardrum is converted into physiological electrical pulses and transmitted to the cerebrum. In other words, hearing can be considered an advanced communication system.

Speech is a complex set of sound waves. Helmholtz studied the distribution and range of frequencies of the component sounds contained in vowels, and introduced the concept of formants, which is still used today. With the recent development of computers, speech recognition technology has come into practical use in everyday life, such as automated telephone answering systems and car navigation systems.

[Yoshio Hiki]

Modern Physics and Acoustics

In the classical theory of sound wave propagation, sound waves are treated as tiny vibration waves propagating through a continuous medium, but this is not enough. For example, when the amplitude of sound waves becomes very large, the principle of superposition no longer holds, and sound waves with complex frequencies spontaneously occur. This is called nonlinear vibration. Also, when the nonlinearity of the medium is particularly strong and the amplitude of the wave motion is particularly large, a special wave motion in which energy is spatially concentrated, called a soliton, occurs. These are some of the important research topics in modern physics. On the other hand, the medium through which sound waves propagate is actually a collection of many atoms and molecules, and is not a continuum. For this reason, the wavelength of sound waves cannot be smaller than the distance between atoms. In other words, there is an upper limit to the frequency of sound vibration, which is about 10 trillion hertz for ordinary solids. Currently, efforts are being made to generate sound waves with such high frequencies by various means. On the other hand, atoms in solids undergo thermal vibration, and their vibration frequencies are correspondingly high. From a microscopic point of view, although there is a large difference in their vibration frequencies, sound waves in solids and heat are the same thing, and in quantum mechanics they are expressed as acoustic quanta or phonons, whose energy has discrete values. Research into the properties of solids and other materials using sound waves has been actively conducted in recent years, and this field is called physical acoustics or sound wave physics.

[Yoshio Hiki]

"Physiology of the Senses," edited by Katsugi Yasuji (1967, Igaku-Shoin)""Electroacoustic Vibrations," edited by the Institute of Electronics and Information Engineers, written by Nishimaki Masao (1978, Corona Publishing)" ▽ "Modern Acoustics, revised 2nd edition, edited by Makita Yasuo (1986, Ohmsha)""Fluid Acoustics," written by M. E. Goldstein, translated by Imaichi Kensaku and Tsujimoto Yoshinobu (1991, Kyoritsu Shuppan)" ▽ "Psychoacoustics," written by E. Zwicker, translated by Yamada Yukiko (1992, Nishimura Shoten)""New Edition: Acoustics of Musical Instruments," written by Ando Yoshinori (1996, Ongaku No Tomo Sha)""Fundamentals of Nonlinear Acoustics," written by Kamakura Tomoo (1996, Aichi Publishing)""Introduction to Solid State Physics, 7th edition, written by C. Kittel, translated by Uno Yoshikiyo et al. (1998, Maruzen)""Architectural and Environmental Acoustics, 2nd Edition (2000, Kyoritsu Shuppan)" by Junichi Maekawa, Masayuki Morimoto, and Kimihiro Sakagami" ▽ "Basic Acoustics - Vibrations, Waves, and Sound Waves" by Shigeru Yoshikawa and Hajime Fujita (2002, Kodansha) " ▽ "Introduction to Sound - Acoustics for Hearing and Speech Sciences" by Charles E. Speaks, supervised translation by Takayuki Arai and Tsutomu Sugawara (2002, Kaibundo Shuppan)""Room Acoustics - The Resonance of Architecture and Its Theory" by Heinrich Kuttorff, translated by Kyoji Fujiwara and Takayuki Hidaka (2003, Ichigaya Shuppan)""Machine Acoustics" by Yoshihiko Yasuda (2004, Corona Publishing)""Solving the Mystery of Acoustics" by Mitsuyasu Yamashita (2004, Maruzen)

[References] | Sound | Hearing | Chladni | Helmholtz | Rayleigh

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

音の発生、伝播(でんぱ)、検出などの基礎と応用について研究する学問分野。音響学の歴史はギリシア時代、ピタゴラスの音階についての数学的研究に始まる。しかし本格的な研究が開始されたのは17世紀に入ってからである。まずメルセンヌは弦の振動についての研究を行い、また空気中での音速を最初に測定した。一方、ニュートンは音速が媒質の性質によって決まり、

で与えられることを理論的に示した。同じころクラードニは板の二次元的な振動を調べ、クラードニ図形をみいだした。19世紀にはレイリーやヘルムホルツらの手により、古典音響学の数学的理論がほぼ完成した。他方、ヘルムホルツは聴覚の理論を発表し、生理音響学の分野を開いた。20世紀に入ってからの電気工学や電子工学の急速な進歩は、電気音響学という大きな分野を生み、いまでも現代音響学の中心的な存在となっている。そのほか建築音響学、水中音響学、心理音響学など、音響学は他の理工学の分野とも密接に関係しており、つねに発展を続けている。その二、三の例を簡単に紹介する。

[比企能夫]

電気音響学

音の振動と電気信号をマイクロホン、スピーカーなどの変換装置により相互に変換し、電気・電子工学的な手段で音の増幅や伝達、記録や再生を行う方法について研究する分野。音が媒質中を直接到達する範囲はきわめて限られており、またすぐ消えてしまう。電気音響学はそれらの欠点を補い、われわれの生活を豊かにするばかりでなく、音についての基礎的な研究を行ううえでも有効な手段となっている。また、古くからの機械的な方法では不可能であった高い振動数の超音波の発生を可能としたのもその成果の一つで、これは基礎科学、工業、医学の方面でも広く応用されている。たとえば、超音波探傷法を用いた材料の欠陥の検出、人体に対する超音波診断、治療などは大きな応用分野である。

[比企能夫]

生理音響学

聴覚および音声について研究する分野。聴覚についての研究は耳の解剖学的研究から始まり、その動的な機能が明らかにされている。それによると、鼓膜の振動としてとらえられた音は生理的な電気パルスに変換されて大脳へ伝達される。すなわち聴覚は高度の通信システムであると考えられる。

 音声は複雑な音波である。ヘルムホルツは母音に含まれる成分音の周波数の分布とその範囲について研究し、現在でも用いられるホルマントという概念を導入した。また最近のコンピュータの発達により、音声認識機能を備えた電話自動応答システムやカーナビゲーションなど、音声の判読や合成などの技術も日常的に実用化されている。

[比企能夫]

現代物理学と音響学

音波の伝播についての古典的な理論では、音波を連続媒質中を伝播する微小振動の波として取り扱っているが、これだけでは十分ではない。たとえば音波の振幅が非常に大きくなると、重ね合せの原理が成立しなくなったり、自発的に複雑な周波数をもった音波が発生したりする。これを非線形振動という。また、媒質の非線形性がとくに強く、波動の振幅がとくに大きくなると、ソリトンといわれるエネルギーが空間的に集中した特殊な波動が生ずる。これらは現代物理学の重要な研究課題の一つである。他方、音波の伝播する媒質は実際には多くの原子、分子の集団であり、連続体ではない。このことから音波の波長は原子どうしの間隔より小さくはなりえない。すなわち音の振動数には上限があることになり、普通の固体の場合それは約10兆ヘルツである。現在このような高い振動数の音波を種々の手段で発生させようとする努力がなされている。一方、固体中の原子は熱振動しており、その振動数はこれに相当する高いものになっている。ミクロな観点からみると、その振動数には大きな差があるが、固体中の音波と熱は同じものであり、量子力学的には音響量子または音子(フォノン)という概念で表され、それのもつエネルギーはとびとびの値をもつ。音波を用いた固体などの物性の研究は近年盛んに行われており、この分野は物理音響学または音波物性学といわれる。

[比企能夫]

『勝木保次編『感覚の生理学』(1967・医学書院)』『電子通信学会編、西巻正郎著『電気音響振動学』(1978・コロナ社)』『牧田康雄編『現代音響学』改訂2版(1986・オーム社)』『M・E・ゴールドシュタイン著、今市憲作・辻本良信訳『流体音響学』(1991・共立出版)』『E・ツヴィッカー著、山田由紀子訳『心理音響学』(1992・西村書店)』『安藤由典著『新版 楽器の音響学』(1996・音楽之友社)』『鎌倉友男著『非線形音響学の基礎』(1996・愛智出版)』『C・キッテル著、宇野良清他訳『固体物理学入門』第7版(1998・丸善)』『前川純一・森本政之・阪上公博著『建築・環境音響学』第2版(2000・共立出版)』『吉川茂・藤田肇著『基礎音響学――振動・波動・音波』(2002・講談社)』『チャールズ・E・スピークス著、荒井隆行・菅原勉監訳『音入門――聴覚・音声科学のための音響学』(2002・海文堂出版)』『ハインリッヒ・クットルフ著、藤原恭司・日高孝之訳『室内音響学――建築の響きとその理論』(2003・市ヶ谷出版社)』『安田仁彦著『機械音響学』(2004・コロナ社)』『山下充康著『謎解き音響学』(2004・丸善)』

[参照項目] | | 聞く | クラードニ | ヘルムホルツ | レイリー

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Audio equipment industry

>>:  Acoustic Chemistry - Onkyo Kagaku

Recommend

Abdülmecit I (English spelling)

…Since the end of the 18th century, the Ottoman E...

HIPS - HIPS

...In addition to the above, there are many plast...

Cross Gorge

A local beer produced by Unazuki Beer Co., Ltd. in...

Parliamentary Stone

The name of the stone. Granite produced in Kurahas...

Eikosho - Eikosho

… There are known examples from the Han dynasty o...

Bishop, Elizabeth

Born: February 8, 1911 in Worcester, Massachusetts...

Flower bed - Kadan

It refers to the arrangement of annual and bienni...

aloin

…The folk medicine Aloe vera was introduced to Ja...

Pickeringite

...For example, halotrichite Fe II SO 4 ・Al 2 (SO...

IUC - IUC

…International Astronomical Union (abbreviated as...

Yatsushiro Plain - Yatsushiro Heiya

The southern half of the Kumamoto Plain is surrou...

Uzbek Khan - Uzbek Khan

...The next Khan, Mangu Timur (1266-82), interven...

Michaux, P.

…The first pedal-powered bicycle was invented in ...

External causes of death - Gaiinshi

Death due to external causes such as trauma, poiso...

Jurin-in Temple

This Shingon Daigo temple is located in Jurin-in-...