For a real number a , a real number x such that x 3 = a is called the cube root of a . There is only one such x for any real number a , and this is represented as 3 √ a . Expanding this to the range of complex numbers, there are three complex numbers z such that z 3 =1, and these are: 1,, Here, if we set , we get . Both ω and ω 2 are complex numbers that become 1 only when cubed, and are called the primitive cube root of 1. The complex numbers 1, ω, and ω 2 form the three vertices of an equilateral triangle in the Gaussian plane (the plane of complex numbers). In general, for a real number a , the complex numbers that satisfy z 3 = a are , , and . One of the three great construction problems (→ construction) in ancient Greece was "to create a cube with twice the volume of a given cube," which becomes a question of whether it is possible to construct a cube root using a ruler and compass. It can be shown that numbers that can be constructed using a ruler and compass are numbers that can be obtained by starting with a rational number and repeatedly performing the operations of taking the square root and adding, subtracting, multiplying, and dividing (→ the four arithmetic operations), so it is clear that cube roots cannot generally be constructed. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
実数 a に対して,x3=a を満たす実数 x を a の立方根と呼ぶ。このような x は任意の実数 a に対してただ一つ存在し,これを 3√a で表す。複素数の範囲に拡張して考えると z3=1を満たすような複素数 z は 3個存在し,それらは, 1,, である。ここで, とおくと, となる。ωとω2はともに 3乗してはじめて 1になる複素数であり,1の原始三乗根と呼ばれる。複素数 1,ω,ω2はガウス平面(複素数平面)において,正三角形の三つの頂点となる。一般に実数 a に対して,z3=a を満たす複素数は ,, である。古代ギリシアの三大作図問題(→作図)の一つに「与えられた立方体の体積の 2倍の体積をもつ立方体をつくること」があるが,これは定規とコンパスによって立方根を作図できるかという問題になる。定規とコンパスで作図できる数は,有理数から出発して,その平方根をとる操作および加減乗除(→四則)の操作を繰り返して得られる数であることが示されるので,一般には立方根は作図できないことがわかる。 出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Cube - Rippoutai (English spelling) cube
>>: Legislative state - Rippo kokka
It means to be linked by a chain. It refers to a s...
…Usually, it refers to the minimum strength of a ...
Lake Constance is a lake on the border of Germany,...
Literary critic, poet, and pacifist activist. His...
〘Noun〙 In Noh, the shite of the "Okina" ...
…[Mitsuo Chihara]. . . *Some of the terminology t...
"Ikken" refers to a small drinking party...
…Around the same time, British researcher R. Hook...
A fish of the genus Salmon and family Salmonidae (...
1859‐81 An outlaw from the American West who is sa...
…But S. Johnson, a leading figure in the London l...
Located on the summit of Mt. Gassan in Tachikawa-c...
In the film industry, there was once a saying that...
A record of the observations made in the early Edo...
Born: May 6, 1859 in Amsterdam [died] March 31, 19...