A general term for the technology of producing metallic materials (metallurgical technology, metal engineering) and the related science (metallurgy, metal engineering). [Hara Zenshiro] History of MetallurgyAncient metallurgyNeolithic people in the Middle East and Balkans learned how to melt and cast native copper from about 5000 BC, and discovered that metallic copper could be obtained by heating copper compounds with charcoal from about 4000 BC. Around 3000 BC in Mesopotamia, it was discovered that adding cassiterite to molten copper coated with charcoal produced bronze, which was harder and tougher than stone, and the Middle East entered the Bronze Age. By 2000 BC, smelted iron along with meteoric iron was being used as a valuable item throughout the Near East, and after 1200 BC, iron tools replaced bronze tools in weapons, agriculture, and tools in the eastern Mediterranean region. Copper tools appeared in China around 2500 BC, and the country entered the Bronze Age around 1600 BC. Iron production began around 600 BC, and cast iron agricultural tools became widespread. Weapons also began to be made from steel around 50 BC, and the country entered the full Iron Age. During the Later Han Dynasty (8-265 BC), cast iron, wrought iron, and steel were mass-produced using a variety of methods, and waterwheels and coal were used to make iron. In the Roman Empire (27 BCE-476 CE), the technology of carburizing wrought iron to make steel and then quenching it to harden it was developed, and brass, made by adding zinc ore to molten copper coated with charcoal, was used for currency. Lead sheets were mass-produced for use in water pipes. [Hara Zenshiro] Medieval metallurgyDuring the Middle Ages, the use of water wheels revolutionized metallurgy. In China, waterwheels were used to smelt metals during the Tang and Song dynasties (618-1279), and annual metal production in the mid-11th century is estimated to have reached 8,000 tons of copper, 100 tons of silver, and 40,000 tons of iron. In Europe, wrought iron production using charcoal furnaces continued throughout the Great Migration Period (5th to 8th centuries), but from the 9th and 10th centuries, production of non-ferrous metals (copper, silver, lead, tin, brass) flourished, and church supplies and agricultural and industrial tools were produced. From the 11th and 12th centuries, waterwheel-powered metallurgical machinery came into use. In the 15th century, iron furnaces in the lower Rhine region began to produce molten cast iron using waterwheel-driven bellows to blow air. This was the beginning of the blast furnace. Blast furnaces were mainly used to manufacture cast iron guns and cannonballs, but excess cast iron was decarburized in a charcoal grate to produce wrought iron. In the Harz and Saxony regions, a copper smelting method (German process) was developed in which copper sulfide ore was roasted and refined copper was produced through a several-stage reduction smelting process in a blast furnace. Tin-lead alloys were widely used, and antimony and bismuth also began to be added. Type alloys belong to this type of alloy. In the 16th century, technical books were published in great numbers, detailing the details of these European smelting, assaying, and casting techniques. These include Billingthio's Pyrotechnia (1540) and Agricola's De re metallica (1556). The Chinese author Song Yingxing's The Divine Art (1637) also contains detailed descriptions of metallurgical techniques. At the end of the 17th century, the phlogiston theory was developed to rationally explain the combustion and reduction phenomena of metals, and in the early 18th century, Réaumur used this theory to study the nature and manufacturing methods of carburizing steel and malleable cast iron. [Hara Zenshiro] Metallurgy during the Industrial RevolutionIn the early 18th century, Britain succeeded in operating a blast furnace with coal coke (Derby, 1709). At the end of the 18th century, Britain invented the puddling process, a method of producing wrought iron in a coal-fired reverberatory furnace (Cote, 1783). Steam engines were used for both the blowers of the coke blast furnaces and the rolling mills used in the puddling process. The age of coal-fired ironmaking had arrived. Improvements were also made to the blast furnace itself, such as the adoption of hot air (Neilson, 1828) and the recovery of blast furnace gas (Fall, 1832). Cast iron and wrought iron became the industrial materials that drove the Industrial Revolution, and Britain's annual iron production increased from 55,000 tons in 1750 to 3.2 million tons in 1853. In Britain, both tin and copper smelting began in coal-fired reverberatory furnaces during the 18th century. The latter involved a multi-stage oxidation smelting process and was called the Welsh process. Steam engines improved the capacity of rolling mills, and wide lead sheets and copper sheets (for protecting ship bottoms) were rolled during the 18th century, and tinplate and thin iron sheets were mass-produced using rolling mills in the 19th century. Based on gas chemistry developed during the Industrial Revolution, Lavoisier overturned the phlogiston theory (1783) and established a new chemistry that made it possible to fundamentally understand metallic compounds and metal smelting. With the development of analytical chemistry, many new metals were discovered, and smelting methods for zinc, cobalt, platinum, nickel, manganese, tungsten, and other metals were developed. Strength tests for cast iron and wrought iron for use as structural materials were actively carried out, and material mechanics developed with a focus on the theory of elasticity. From the end of the 18th century, science and engineering universities began to be established in France, Germany, and slightly later in the United Kingdom, and their professors began to compile excellent metallurgical texts (Carsten, 1816, Percy, 1846). [Hara Zenshiro] Metallurgy in the Industrial AgeIn the mid-19th century, two new steelmaking processes based on new principles emerged, making mass production of steel possible. (1) The Bessemer process (1856), in which air was blown into molten pig iron to burn and decarburize the carbon in the pig iron to produce molten steel, and (2) the Siemens-Martin process (1860), in which molten pig iron was reacted with iron ore in an open hearth equipped with a regenerator to produce molten steel. The steel mass-produced by these new steelmaking processes was used in railroads, ships, bridges, and high-rise buildings, ushering in an era of heavy industrialization in Europe and America. World steel production in 1900 was 25 million tons. In response to the increasing demand for pig iron, a raw material for steelmaking, blast furnace technology developed in Germany and the United States (abolition of the fore-hearth in 1867, expansion of the hearth in 1880), and in 1897 the Duquesne blast furnace (USA) reached a daily production of 700 tons. The increasing demand for steel prompted advances in steel processing technology, with the appearance of the three-high rolling mill (1856) and reversible rolling mill (1886), and the operation of a continuous rolling mill for producing thin steel plates in the United States (1869). The forge-welded iron pipe manufacturing method for city gas pipes (1824) and the Mannesmann pipe-making machine (1885) for producing seamless steel pipes to meet demand from the bicycle industry were invented. Faraday began the experiment of obtaining high-quality steel by mixing various metals in a crucible casting process (1819), followed by the invention of self-hardening tool steel (Machete, 1828) and wear-resistant high manganese steel (Hatfield, 1882). The converter process was adopted for copper smelting, in which air was blown into molten copper sulfide and iron to obtain metallic copper (1880), just like the Bessemer steelmaking process. The rapid development of electricity in the 19th century also brought about a revolution in metallurgical technology. As soon as generators came into practical use, electrolytic refining of copper (1869) and electrowinning of nickel (1893) were industrialized, and a method of mass-producing aluminum by dissolving aluminum oxide in a molten salt bath of aluminum fluoride and electrolysis was invented (Héroult and Hall, 1886). At the end of the 19th century, the use of electricity in metallurgical furnaces also began to be put to practical use (Héroult furnace, 1899). During this period, the observation of metal structure using a reflecting electron microscope began (Solvay, 1863). Combined with high-temperature measurement methods (Le Châtelier's thermocouple, 1891) and advances in thermodynamics (Gibbs' phase rule, 1873), the foundations of metallography were established, and progress was made in creating phase diagrams of various alloys, including steel, and in investigating the nature of steel quench-hardening. [Hara Zenshiro] Various fields of metallurgy and various types of metallurgyFrom the history of metallurgy, it can be seen that metallurgy can be broadly divided into three fields: metal smelting, metal processing, and metallic materials. Metal materials is the field that develops the composition and heat treatment methods of metallic materials with required properties. Metallurgy can also be classified as physical metallurgy or chemical metallurgy depending on the scientific field involved. The smelting and processing fields are sometimes collectively called manufacturing metallurgy. Depending on the type of metallic material produced by metallurgical technology, it can be classified as ferrous metallurgy or non-ferrous metallurgy. Metal smelting by high-temperature chemical reactions is called pyrometallurgy, while smelting by leaching metals from ores with solvents is called hydrometallurgy. The field of metallurgy that uses electricity is called electrometallurgy. In the 20th century, new fields such as powder metallurgy, vacuum metallurgy, and nuclear metallurgy were also developed. [Hara Zenshiro] Metallurgy in the 20th centuryA characteristic of 20th century metallurgical technology, common to other production technologies, is the advancement of mechanization, automation, and scientific management of production processes. In the first half of the 20th century, the United States mechanized blast furnace operations and sintered and granulated iron ore. In the mid-20th century, the former Soviet Union introduced high-pressure blasting and vaporization cooling. In Japan, from the 1960s, hot air temperature was raised, heavy oil was injected, and charge distribution control was introduced. In the 1970s, blast furnaces reached a daily production of 10,000 tons. In the first half of the 20th century, the open hearth furnace increased its efficiency with the adoption of heavy oil fuel, but in 1949, the oxygen top-blown converter process, jointly invented by Germany and Austria, was improved in Japan and replaced the open hearth furnace in the second half of the 20th century. Electric steelmaking furnaces became more productive with the introduction of the ultra-high power operation method (1964), and are now used to produce high-grade and special steels. Vacuum degassing and vacuum decarburization of molten steel have been used to produce low-hydrogen high-grade steel and stainless steel since the 1960s (vacuum metallurgy). In the field of steel processing, continuous casting methods have been developed since the mid-20th century. Steel plate rolling machines began mass-producing thin steel plates for automobiles and other uses in the United States in the 1920s, with wide-width hot and cold continuous rolling machines (strip mills). There has been remarkable progress since the mid-20th century, with rolling speeds reaching 25 meters per second in the 1970s. In pipe manufacturing technology, new seamless steel pipe rolling machines were developed in the 1920s to meet the increasing demand for steel pipes for oil extraction and transportation, and in the second half of the 20th century, various welded steel pipe manufacturing methods using electric welding were developed. In the field of steel materials, high-speed tool steel (Taylor and White, 1906) was invented in the early 20th century. Low-alloy hardened steel for automobile parts was standardized in the 1930s. Frequent destruction accidents due to low-temperature brittleness of welded ships and bridges in the 1940s led to the development of high-tensile steel with good fracture mechanics and weldability. Based on research into the high-temperature creep phenomenon of metals, the development of heat-resistant steel for high-temperature turbines also progressed, and ultra-strong steel for aerospace materials has been researched since the 1960s. Chromium steel and nickel-chromium steel have been developed as stainless steel since 1912, and production increased rapidly after World War II. Magnetic steel was well researched in Japan (Kotaro Honda and KS Steel, 1917). Silicon steel for iron cores was put to practical use in the early 20th century, but performance was improved from the 1950s by controlling the orientation of crystal grains. As a result of these developments in ferrous metallurgy technology, annual world crude steel production in the 1970s reached 750 million tons. In the field of non-ferrous metal smelting, the flotation method, which came into practical use after 1915, also made it possible to separate various metals from complex ores. The fine sulfide ore concentrates produced by this method began to be roasted in fluidized beds in the 1940s. Fluidized bed roasters were highly efficient and made it easy to produce sulfuric acid from exhaust gas (sulfur dioxide). In copper pyrometallurgy, the flash smelting furnace, which rapidly combusts and smelts fine sulfide ore concentrates with oxygen or preheated air, began to be developed in the 1950s, and continuous copper smelting furnaces, which connect the smelting furnace, tangle/skin separation furnace, and copper smelting furnace with a trough, began to be developed in the 1970s. In non-ferrous hydrometallurgy, the gold smelting method began in the 1920s, when gold ore was finely crushed and the gold was leached with an aqueous solution of sodium cyanide. Organic solvent extraction has been used in the hydrometallurgy of metals for nuclear reactors since the 1940s, but since the 1960s this method has also been applied to the extraction of general metals such as copper and cobalt. Within the field of metal processing, casting technology was promoted by the mass production method of automobiles from the 1920s, which promoted the mechanization of metal casting work and the development of tough cast iron and die casting. Die casting is a method of casting by forcing molten metal into a mold, and dedicated aluminum alloys and zinc alloys were also developed. In the 1940s, the ancient dewaxing method was revived as a precision casting method in order to cast turbine blades from super heat-resistant alloys. Metal welding methods such as arc welding, electric resistance welding, and gas welding were invented at the end of the 19th century and entered practical use when the first fully welded ship was built in 1920. In the 1930s, submerged arc welding and inert gas arc welding were invented, the former being used in the mass production of steel ships and the latter in the mass production of light alloy aircraft. Electric resistance welding is a metal processing method that is indispensable in today's automated car body assembly lines. Using the powder metallurgy process, in which metal powder is compressed, molded, and sintered, tungsten wire (1909) and carbide-based hard alloys (1926) were produced, and from the 1950s the company also began mass-producing small iron parts. In the field of non-ferrous metal materials, age-hardening aluminum alloys (Wilm, 1909) enabled the development of metallic aircraft, while nickel-based precipitation-hardened superalloys enabled the development of jet planes from the 1940s onwards. Lightweight and strong titanium metal is produced by reducing and decomposing titanium tetrachloride vapor with molten magnesium (Kroll, 1940) and is used as an aerospace material. For this purpose, composite materials made of strong inorganic fibers bonded with metals have been developed since the 1970s. In terms of electronic materials, metals such as tungsten and molybdenum were important for vacuum tubes, but the development of transistor and integrated circuit technology since 1950 has been driven by the production technologies of high-purity germanium using the zone melting method and high-purity silicon using the floating zone melting method. The production of metallic materials for nuclear fuel, cladding tubes, control rods, reactor pressure vessels, and cooling tubes for nuclear power generation requires a new perspective on metallurgical technology and metallurgy (nuclear metallurgy). The rapid development of physics since the discovery of cathode rays and X-rays at the end of the 19th century has also brought about a revolution in metallurgy. The phenomenon of crystal diffraction by X-rays (Laue, 1912) was immediately used to analyze the crystal structure of metals and alloys, becoming a new research tool in metallography. Bohr's theory of atomic structure (1913) revealed the true nature of metals, and quantum mechanics paved the way for solid-state physics, which elucidates the properties of metals and alloys based on their atomic and electronic structures. Dislocations, which were hypothesized to explain the plasticity of metals (Taylor, Orowan, and Yamaguchi Keiji, 1934), were proven to exist through the observation of thin metal pieces through the electron microscope (Borman and Hirsch, 1956), and this has advanced the understanding of the strength and fracture phenomena of metals. The phenomenon of superconductivity in metals at extremely low temperatures (Kammerlin and Onnes, 1911) has also been theoretically elucidated (Bardeen, 1956), and in the 1960s alloy-based superconducting materials were put to practical use. Thus, in recent physical metallurgy, coupled with developments in the theory of quantum statistical mechanics and experimental tools such as electron microscopes, nuclear magnetic resonance apparatus, Mössbauer spectroscopy, and neutron diffraction, there have been significant advances in research into the physical properties of metals, alloys, and semiconductors, such as plasticity, magnetism, electrical conductivity, and dielectric properties, giving rise to new materials such as amorphous metals and shape memory alloys. In the field of chemical metallurgy, chemical thermodynamics, which uses thermodynamics to explain chemical reactions, was developed in the early 20th century (Lewis, 1923), and from the 1930s thermodynamic data on various substances was accumulated, and from the 1940s onwards it became possible to analyze and predict metallurgical reactions using thermodynamics. In addition, chemical engineering, which developed from the 1920s, and reaction engineering, which began in the 1930s, also became important tools in the development of metallurgical equipment and processes. Thus, in the 20th century, metallurgy developed into a field that studied metallic materials and their production technology while being deeply connected to other sciences such as physics, chemistry, mechanical engineering, electrical engineering, and chemical engineering. More recently, a comprehensive field known as materials science has developed that includes the study of materials in general. [Hara Zenshiro] "RF Tylecote A History of Metallurgy (1979, The Metals Society)" ▽ "A.H. Cotterell, Cotterell's Metallurgy, translated by Hiroshi Kimura (1969, Agne)" ▽ "Iron and Steel Institute of Japan, ed., Steel Manufacturing Methods (1972, Maruzen)" ▽ "Seiichi Nishikawa, Introduction to Metal Engineering (1985, Agne Technology Center)" [Reference] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
金属材料を生産する技術(冶金技術、金属工業技術)とそれに関する科学(冶金学、金属工学)の総称である。 [原善四郎] 冶金の歴史古代の冶金中近東やバルカン半島の新石器時代人は紀元前約5000年から自然銅を溶融・鋳造することを知り、前約4000年から銅化合物を木炭とともに加熱すると金属銅が得られることを知った。前3000年ころメソポタミアで、錫(すず)石を木炭で被覆した溶融銅に加えると、石よりも硬くて粘り強い青銅ができることがみいだされ、中近東は青銅器時代に入った。鉄は前2000年までに近東各地で隕鉄(いんてつ)とともに製錬鉄が貴重品に使用され、前1200年以後東地中海地方から鉄器が青銅器にかわる武器、農・工具となっていった。 中国では前2500年ころから銅器が現れ、前1600年ころから青銅器時代に入った。前600年ころから製鉄が始まり、鋳鉄製農具が普及した。前50年ころから武器も鉄鋼製となり、完全に鉄器時代に入った。後漢(ごかん)(8~265)の時代には、鋳鉄、錬鉄、鋼が各種の方法で量産され、水車送風、石炭が製鉄に利用された。 ローマ帝国(前27~476)には、錬鉄に浸炭して鋼とし、焼入れ硬化する技術があり、亜鉛鉱石を木炭被覆の溶融銅に加えて製造した黄銅が貨幣に用いられた。鉛板が水道管用として量産された。 [原善四郎] 中世の冶金中世には水車の利用が冶金技術に変革をもたらした。 中国では、唐~宋(そう)(618~1279)の時代に水車送風が金属製錬に用いられており、11世紀中期の金属年産量は銅8000トン、銀100トン、鉄4万トンに達したとみられる。 ヨーロッパでは、民族大移動期(5~8世紀)中も各地で木炭炉による錬鉄生産は存続したが、9、10世紀から各地の非鉄金属(銅、銀、鉛、錫、黄銅)の生産が盛んになり、教会用品や農・工具が製作された。11、12世紀から、水車動力の冶金機械が使用されるようになった。 15世紀にライン川下流地方の製鉄炉は、水車駆動のふいごで送風し、溶融鋳鉄を生産するようになった。高炉の始まりである。高炉は主として鋳鉄砲・砲弾の製造に用いられたが、余分の鋳鉄は木炭火床で脱炭して錬鉄がつくられた。ハルツ、ザクセン地方では硫化銅鉱を焙焼(ばいしょう)し、溶鉱炉で数段階の還元溶錬工程により精銅を生産する銅製錬法(ドイツ法)が発達した。錫・鉛合金が広く用いられ、アンチモン、ビスマスの添加も行われるようになった。活字合金はこの系統の合金である。 16世紀には、これらヨーロッパの製錬、試金、鋳造技術の詳細を記述した技術書の刊行が盛んになった。ビリングチオの『火工術(ピロテクニア)』(1540)、アグリコラの『デ・レ・メタリカ』(1556)などである。中国、宋応星(そうおうせい)の『天工開物』(1637)も冶金技術の記述が詳しい。17世紀末には、金属の燃焼・還元現象を合理的に説明するためフロギストン説が生まれ、18世紀初めレオミュールはこの説に基づいて、浸炭鋼、可鍛鋳鉄の本性と製造法を研究した。 [原善四郎] 産業革命期の冶金18世紀初頭にイギリスで、高炉を石炭コークスで操業することに成功した(ダービー・1709)。18世紀末にはイギリスで、石炭焚(た)き反射炉で錬鉄を生産するパドリング法が発明された(コート・1783)。コークス高炉の送風機にも、パドリング法の圧延機にも蒸気機関が用いられた。石炭製鉄の時代が到来したのである。高炉自体にも熱風の採用(ニールソン・1828)、高炉ガスの回収(フォール・1832)などの改良が加えられた。鋳鉄と錬鉄は産業革命を推進する工業材料となり、イギリスの鉄年産量は1750年の5万5000トンから、1853年の320万トンへと増大した。 イギリスでは錫製錬も銅製錬も18世紀中に石炭焚き反射炉で行われるようになった。後者は数段階の酸化溶錬工程からなり、ウェールズ法とよばれた。蒸気機関は圧延機の能力を高め、18世紀中には広幅鉛板や銅板(船底保護用)が圧延されるようになり、19世紀に入ってブリキ板薄鉄板も圧延機で量産されるようになった。 産業革命期に発達した気体化学に基づき、ラボアジエがフロギストン説を打破(1783)して樹立した新化学は、金属化合物、金属製錬の本質的理解を可能にした。分析化学が発達して、多くの新金属が発見され、亜鉛、コバルト、白金、ニッケル、マンガン、タングステンなどの製錬法が開発された。鋳鉄や錬鉄を構造材に用いるための強度試験が盛んに行われ、材料力学が弾性論を中心に発達した。18世紀末から、フランス、ドイツ、やや遅れてイギリスと理工系大学の設立が始まり、その教授たちによって優れた冶金学専門書が編纂(へんさん)され始めた(カルステン・1816、パーシー・1846)。 [原善四郎] 工業化時代の冶金19世紀なかばに新原理に基づく二つの新製鋼法が登場し、鋼の量産が可能となった。〔1〕溶融銑鉄に空気を吹き込み、銑鉄中の炭素を燃焼・脱炭して溶融鋼を得るベッセマー法(1856)、〔2〕蓄熱室を備えた平炉により、溶融銑鉄と鉄鉱石を反応させて溶融鋼を得るシーメンス‐マルタン法(1860)である。これらの新製鋼法で量産される鋼材は、鉄道、船舶、橋梁(きょうりょう)、高層建築に使用され、ヨーロッパ、アメリカに重工業化時代を到来させた。1900年の世界鋼生産量は2500万トンとなった。 製鋼原料銑の需要増加にこたえて、ドイツ、アメリカで高炉技術が発達し(前床廃止・1867、炉床拡大・1880)、1897年のデュケーヌ高炉(アメリカ)は日産700トンに達した。鋼材の需要増大は鋼材加工技術の進歩を促し、圧延機では三段式圧延機(1856)、可逆式圧延機(1886)が現れ、薄鋼板製造用の連続圧延機がアメリカで稼動した(1869)。都市ガス管用として鍛接鉄管製造法(1824)や、自転車産業からの需要にこたえて継目無し鋼管を製造するマンネスマン製管機(1885)が発明された。るつぼ鋳鋼法で各種金属を配合することにより優良鋼を得る試みはファラデーに始まり(1819)、引き続いて自硬性工具鋼(マシェット・1828)をはじめ、耐摩耗性高マンガン鋼(ハットフィールド・1882)が発明された。銅製錬法もベッセマー製鋼法と同様に、溶融硫化銅・鉄(かわ)に空気を吹き込んで金属銅を得る転炉法が採用された(1880)。19世紀に入って急速に発展した電気学は冶金技術にも変革をもたらした。発電機が実用段階に入ると、ただちに、銅の電解精製(1869)、ニッケルの電解採取(1893)が工業化され、フッ化アルミニウムの溶融塩浴に酸化アルミニウムを溶解し、電解することによってアルミニウムを量産する方法が発明された(エルー、ホール・1886)。19世紀末には冶金炉への電力利用も実用化し始めた(エルー炉・1899)。 この時期に反射型顕微鏡による金属組織の観察が始まり(ソルベー・1863)、高温度測定法(ル・シャトリエの熱電対・1891)および熱力学の進歩(ギブスの相律・1873)と相まって、金属組織学の基礎がつくられ、鋼をはじめ各種合金の状態図作成や鋼の焼入れ硬化の本質の検討が進められた。 [原善四郎] 冶金の諸分野と各種の冶金以上の冶金の歴史からみて、冶金には大別して金属製錬、金属加工、金属材料の三分野があることがわかる。金属材料とは、所要の性質をもった金属材料の組成・熱処理法を開発する分野である。冶金を、関係する科学分野によって物理冶金、化学冶金に分類することもある。製錬・加工分野をあわせて製造冶金とよぶこともある。冶金技術で生産する金属材料の種類に応じて、鉄冶金、非鉄冶金に分類する。高温化学反応による金属製錬を乾式冶金とよび、鉱石から溶剤で金属を浸出する製錬を湿式冶金という。電気を利用する冶金分野を電気冶金という。20世紀には、粉末冶金、真空冶金、原子力冶金などの新分野も開けた。 [原善四郎] 20世紀の冶金20世紀の冶金技術の特徴は、他の生産技術とも共通して、生産工程の機械化、自動化、科学的管理が進んだことである。 鉄鋼製錬技術は、高炉技術において20世紀前半にアメリカで高炉作業の機械化、鉄鉱石の焼結・整粒、20世紀中期に旧ソ連で高圧送風、気化冷却、1960年代から日本で熱風温度上昇、重油吹込み、装入物分配制御、などの技術改良が加えられ、1970年代の高炉は日産1万トンに達した。製鋼法は、20世紀前半に重油燃料の採用などで平炉が能率を高めたが、1949年にドイツ・オーストリア共同で発明された酸素上吹き転炉法が日本で改良を加えられ、20世紀後半には平炉にとってかわった。電気製鋼炉は超高電力操業法(1964)で生産性が高まり、高級鋼、特殊鋼の生産に使用されている。溶鋼を真空脱ガス、真空脱炭する諸装置が、1960年代から低水素高級鋼、ステンレス鋼の生産に実用されている(真空冶金)。 鉄鋼加工の分野では、20世紀中期から、連続鋳造法が発展している。鋼板圧延機は、1920年代からアメリカで広幅熱間および冷間連続圧延機(ストリップ・ミル)が自動車用などの薄鋼板を量産し始めた。20世紀中期からの進歩は著しく、1970年代には圧延速度が秒速25メートルにも達した。製管技術は、1920年代から石油採掘・輸送用鋼管の需要増大にこたえて、新型の継目無し鋼管圧延機が発達し、20世紀後半には電気溶接法を利用した各種の溶接鋼管製造法が発達した。 鉄鋼材料の分野では、20世紀初頭、高速度工具鋼(テイラー、ホワイト・1906)が発明された。自動車部品用の低合金焼入れ鋼は1930年代に規格化が進んだ。1940年代に頻発した溶接船・橋梁の低温脆性(ぜいせい)による破壊事故は、破壊力学と溶接性のよい高張力鋼を発達させた。金属の高温クリープ現象の研究を基礎に、高温タービン用耐熱鋼の開発も進み、1960年代から航空・宇宙材料用として超強力鋼が研究されている。ステンレス鋼は1912年以来、クロム鋼、ニッケル・クロム鋼が開発され、第二次世界大戦後に生産が急増した。磁石鋼は日本でよく研究が進んだ(本多光太郎、KS鋼・1917)。鉄心用のケイ素鋼は20世紀初頭に実用化したが、1950年代から結晶粒の方向制御により性能を高めた。以上のような鉄冶金技術の発展で、1970年代の世界粗鋼年間生産量は7億5000万トンとなった。 非鉄金属製錬の分野では、1915年以後実用化した浮遊選鉱法は複雑鉱からの各種金属の相互分離も可能にした。この方法の産物である微粉の硫化鉱精鉱は1940年代から流動床法で焙焼されるようになった。流動焙焼炉は高能率であり、排ガス(亜硫酸ガス)からの硫酸製造を容易にした。銅の乾式冶金では、1950年代から微粉硫化鉱精鉱を酸素ないし予熱空気で急速燃焼して溶錬する自溶炉、さらに70年代から溶錬炉、からみ・かわ分離炉、製銅炉の三者を樋(とい)で連結した連続製銅炉、などが発達した。非鉄湿式冶金では、1920年代から金製錬法は、金鉱石を微粉砕し、青化ナトリウム水溶液で金を浸出する方法となった。1940年代から原子炉材料金属の湿式冶金に有機溶媒抽出法が利用されたが、この方法は60年代から銅、コバルトなどの一般金属の採取にも応用された。 金属加工分野のなかで、鋳造技術は、1920年代からの自動車量産方式が、金属鋳造作業の機械化、強じん鋳鉄やダイカスト法の発展を促進した。ダイカスト法は金属溶湯を金型に圧入して鋳造する方法で、専用のアルミニウム合金、亜鉛合金も開発された。1940年代には超耐熱合金のタービン・ブレードを鋳造するため、古来の脱ろう法が精密鋳造法として復活した。 19世紀末に発明されたアーク溶接法、電気抵抗溶接法、ガス溶接法などの金属溶接法は、1920年に最初の全溶接船が建造され実用に入った。1930年代にサブマージ・アーク溶接法、不活性ガスアーク溶接法が考案され、前者は鋼船、後者は軽合金航空機の量産に利用された。電気抵抗溶接法は今日の車体自動組立てラインに欠かせない金属加工法である。 金属粉を圧縮成形・焼結する粉末冶金法によって、タングステン線(1909)、炭化物系超硬合金(1926)がつくられ、1950年代からは小形鉄製部品の量産にも進出している。 非鉄金属材料の分野では、時効硬化性アルミニウム合金(ウイルム・1909)が金属航空機の発達を、またニッケル基析出硬化型超耐熱合金が1940年代からのジェット機の発達を可能とした。軽量・強力な金属チタンは、四塩化チタン蒸気を溶融マグネシウムで還元・分解する方法(クロール・1940)で生産され、航空・宇宙材料となっている。この用途には、1970年代から無機強力繊維を金属で結合した複合材料の開発が進んでいる。 電子材料の面では、真空管にはタングステン、モリブデンなどの金属が重要であったが、1950年以降のトランジスタ、集積回路技術の発展の背景には、帯溶融法による高純度ゲルマニウム、浮遊帯溶融法による高純度シリコンの製造技術があった。原子力発電用の核燃料、同被覆管、制御棒、原子炉圧力容器、同冷却管などの金属材料の生産には、新しい観点からの冶金技術や冶金学(原子力冶金)が必要である。 19世紀末の陰極線・X線の発見以来の物理学の飛躍的な発展は冶金学にも変革をもたらした。X線の結晶回折現象(ラウエ・1912)はただちに金属・合金の結晶構造解析に利用され、金属組織学の新研究手段となった。ボーアの原子構造論(1913)は金属の本性を明らかにし、続いて量子力学は、金属・合金の諸性質を原子・電子構造に基づいて解明する固体物理学に道を開いた。金属の塑性を説明するために仮定された転位(テーラー、オロワン、山口珪次・1934)は、電子顕微鏡による金属薄片の透過観察(ボルマン、ハーシュ・1956)によって実在が証明され、金属の強度や破壊現象の解明を前進させた。金属の極低温における超電導現象(カマーリン・オネス・1911)の理論的解明も進み(バーディーン・1956)、1960年代には合金系超電導材料が実用に供された。こうして最近の物理冶金は、量子統計力学理論の発展と、電子顕微鏡、核磁気共鳴装置、メスバウアー法、中性子回折などの実験手段の発達と相まって、金属・合金・半導体の塑性・磁性・電導性・誘電性などの物性研究が著しく進展し、アモルファス金属、形状記憶合金などの新材料を生み出している。 化学冶金の面では、化学反応を熱力学によって解明する化学熱力学が20世紀初頭に発展し(ルイス・1923)、1930年代から諸物質の熱力学的データも蓄積され、40年代以降は、金属製錬反応を熱力学によって解析・予見することが可能となった。また1920年代から発達した化学工学、30年代からの反応工学も、冶金装置、工程の開発に大きな武器となった。 こうして20世紀の冶金学は、物理学、化学、機械工学、電気工学、化学工学などの諸科学と深く関係しつつ、金属材料そのものと金属材料生産技術を研究対象として発展している。さらに最近では広く材料全般を含めた材料科学という総合的な分野が育っている。 [原善四郎] 『R.F.TylecoteA History of Metallurgy (1979, The Metals Society)』▽『A・H・コットレル著、木村宏訳『コットレルの金属学』(1969・アグネ)』▽『日本鉄鋼協会編『鉄鋼製造法』(1972・丸善)』▽『西川精一著『金属工学入門』(1985・アグネ技術センター)』 [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Metallurgical furnace - Yakinro
...There is a cave near Mt. Gongen in the northwe...
A high peak in the Karakoram Mountains. Also known...
...A descendant of Muto Yorihira, a bureaucrat fr...
...On the other hand, when blood clots occur with...
Documentary film director. Born in Fukushima Pref...
A mountain located in the southwest of Hokkaido, ...
...It is said to have been started by the monk Ku...
A labor union that is controlled or operated by, ...
…There are currently many synthetic substances kn...
...By covering the surface of this framework with...
Shinpa actor. His real name was Rokuro. He was bo...
...All of these species are freshwater organisms,...
1799‐1884 Hungarian revolutionary democrat. Born i...
...As a result, many of the stadts were tribal gr...
A hot, fluid layer in the upper mantle region of t...