The ear is a collective term for the organs of hearing and balance in the head of vertebrates, and includes the inner ear, middle ear, and outer ear. On the other hand, the receptors for sound are sometimes referred to as ears in general, and include organs such as the eardrum of insects. The inner ear of vertebrates is thought to have originally been formed by the sinking of mechanical stimuli receptors, called the lateral line organ or neuromast of fish and aquatic amphibians, which respond to water currents and vibrations, into the body. The inner ear is a complex collection of intricate, sac-like organs, also known as a labyrinth, and its basic elements are the utricle and saccule in the vestibule, and the semicircular canals. The saccule has a part called a vasa vestibuli, which develops as a sound receptor in reptiles, birds, and mammals. In mammals in particular, it extends long and forms a spiral to become the cochlea. These organs are collectively called the auditory lateral line system or lateral line labyrinth system, and hair cells are their common receptors. Each hair cell has dozens of sensory hairs. A ciliary axoneme structure made up of microtubules can be seen in one hair at one end of the hair. The ciliary axoneme is characteristic of cilia, which are motile cell organelles, suggesting that these sensory hairs originate from cilia. Sensory hairs with this axoneme are called kinocilia, and those without are called stereocilia. Stereocilia are microvilli that are different from cilia and contain regularly-spaced actin filaments inside. Sensory hairs in the hair cells of the lateral line organ and semicircular canals are embedded in a thin membrane made of a gelatinous substance called the cupula. When the cupula is tilted by the water flow, this distortion generates a receptor potential in the hair cell. The stereocilia of hair cells are regularly-spaced so that they become shorter as they move away from a single kinocilia. When the cupula tilts toward the kinocilia, the hair cell is depolarized, and when it tilts toward the opposite side, it is hyperpolarized. The afferent (sensory) nerves coming to the hair cells always send out spontaneous impulses at a nearly constant frequency, but the frequency of spontaneous impulses increases when the hair cells are depolarized, and decreases when they are hyperpolarized. It is also known that the hair cells are controlled by inhibitory efferent nerves. In the saccule and utricle of the inner ear of vertebrates, staurolites made of calcium carbonate crystals sit on sensory hairs, and the force applied to them detects the direction of gravity and the acceleration of linear motion. The semicircular canals are tubular organs that emerge from the utricle, draw a semicircle, and return to the utricle. They detect rotational motion by the flow of fluid (endolymph) inside the canal and the resulting tilt of the cupula. Among vertebrates, primitive cyclostomes have only one semicircular canal, with the utricle and saccule not being separate, and there are also those with two semicircular canals, with the utricle and saccule separated. In other vertebrates, the three semicircular canals are located in orthogonal planes, allowing them to detect rotation in any plane in space. In some bony fishes, such as carp and catfish, a bone fragment formed from the processes of the first three vertebrae connects the swim bladder to the saccule. This device, called the Weber's organ, transmits pressure changes in the swim bladder caused by underwater sound to the saccule. In land animals, a special mechanical device is required to transmit sound waves, which are vibrations of air, as vibrations of the endolymphatic fluid in the inner ear saccule. In vertebrates of amphibians and above, the middle ear is developed, consisting of the tympanic cavity, tympanic membrane, and tympanic ossicles that originate from the first branchial arch. Amphibians through birds have one columnar ossicle, but mammals have three. The cochlea that develops in mammals is basically a straight tube in crocodiles and birds, and does not form a spiral. This is an organ that receives sound waves, and the organ of Corti that runs along the long axis of the tube has hair cells arranged in three rows and one row, and is covered by a tectorial membrane. The hair cells of adult mammals do not have kinocilia. The cochlea is an organ that distinguishes the frequency or pitch of sound, and the longer the cochlear duct, the higher the ability to distinguish frequencies. In general, smaller animals are more likely to receive higher frequencies. Compared to the human hearing range (20-20,000 Hz), cats (50,000 Hz) and bats (100,000 Hz) have a higher upper frequency limit. On the other hand, it is said that elephants can hear best low-pitched sounds that are close to the lower limit of the human hearing range. Whales are an exception, being able to hear high-pitched sounds of over 150,000 Hz. Bats and whales use echolocation to emit high-frequency sounds and listen to the echoes to determine the location and direction of objects. Insects have a sound receptor called the tympanic organ. Its location varies depending on the species, such as the tibia of the forelimb (crickets), the second abdominal segment (cicadas), or the metathorax (poor tussock moths). The audible range is shifted to higher frequencies, and moths respond well to the ultrasonic waves emitted by bats, their natural enemies. In general, the tympanic organ does not have a mechanism for analyzing the frequency of sound waves, but it has an excellent ability to detect the intensity of sound and the direction of the sound source. In addition, the common name for the mammalian external ear pinna or similar objects is "ear." In this case, the name is based only on the similarity of appearance, and has no relation to their function as receptors for hearing or balance. Examples of this are the protrusions on the head of a planarian and the fins coming out of the body of a squid. [Akira Murakami] The human earThe ear is a sensory organ that controls hearing and balance, and contains auditory receptors and equilibrium organs. The hearing organ is made up of three main parts: the outer ear, the middle ear, and the inner ear. The outer ear consists of the auricle and the ear canal, but when people refer to the ear as the ear, they sometimes just mean the auricle. [Kazuyo Shimai] AuricleThere are significant individual differences in the shape and size of the auricle, because these are determined by the auricle's underlying auricle cartilage (which is elastic cartilage). The earlobe, which is connected to the bottom of the auricle, contains no cartilage at all and is mainly made up of fatty tissue. The triangular fossa inside the auricle contains many sweat glands and sebaceous glands, and the skin of the tragus (the part that protrudes backward at the anterior edge of the external auditory canal) has relatively rough, short ear hairs, which also extend to the antitragus (the part that protrudes backward relative to the tragus at the rear of the external auditory canal). The tubular part of the auricle from the external auditory canal to the eardrum is the external auditory canal. [Kazuyo Shimai] Ear canalThe external auditory canal is about 25 mm long, with the inner two-thirds being bony and the outer one-third being cartilaginous. Overall, it runs in a gentle S-shaped curve. That is, when viewed from a horizontal plane, the outer part is convex forward and the inner part is convex backward, and when viewed from a vertical plane (face value), the outer part is convex downward and the inner part is convex upward. The bony external auditory canal has almost no subcutaneous tissue, and the bone wall is just under the skin, and the periosteum is fixed to the skin, so it is easy to feel pain when touched with an ear pick, etc. In infants, the bony external auditory canal is not yet fully formed, but by the age of 5 or 6, the cartilaginous and bony external auditory canals are almost equal in length. The auriculotemporal nerve (a branch of the trigeminal nerve) and the vagus nerve are distributed in the external auditory canal, so the ear may feel pain when the tongue or teeth (which are also distributed by the trigeminal nerve) are stimulated. In addition, stimulation of the ear canal can cause sneezing due to the vagus nerve reflex. At the very back of the ear canal is the eardrum, which is the boundary between the middle ear and the ear canal. [Kazuyo Shimai] Eardrum and middle earThe eardrum can be observed through the external ear canal by pulling the auricle backwards, which straightens the ear canal. The eardrum is long and diagonally extending from the front upper to the back lower, but in newborns it is slightly rounded and almost vertical. For this reason, in newborns, the eardrum can be seen by pulling the auricle downwards. The outer surface of the eardrum contains branches of the trigeminal nerve, making it highly sensitive to pain. The small chamber behind the eardrum is the middle ear. The middle ear mainly consists of the tympanic cavity, which is connected to the pharyngeal cavity by the Eustachian tube and accessory sinuses (mastoid sinus and mastoid cell). The overall shape of the tympanic cavity is a biconcave lens shape, with an inclination similar to that of the tympanic membrane. The walls of the tympanic cavity are divided into six walls, of which the tympanic membrane is the outer wall. From the rear upper wall of the tympanic cavity there is a hole that connects via the mastoid cavity opening to the mastoid sinus and from there to the mastoid cell, and from the anterior lower wall there is a hole that connects via the Eustachian tube opening to the Eustachian tube. As the Eustachian tube opens into the pharynx via the pharyngeal opening of the Eustachian tube, air is present in the inner cavity of the tympanic cavity, and when the Eustachian tube is open the pressure of the tympanic cavity is the same as the atmospheric pressure. Within the tympanic cavity, three ossicles are connected by joints to form a chain, which is attached to muscles and ligaments. The chain of ossicles extends between the tympanic membrane and the vestibular window of the inner ear, and is connected in the following order from the tympanic membrane side: malleus, incus, and stapes. The handle of the malleus is attached to the tympanic membrane, and the base of the stapes fits into the vestibular window. Vibrations from the tympanic membrane are transmitted through the three ossicles to the vestibular window, but because the area of the vestibular window is approximately 1/20th the area of the tympanic membrane, stimuli to the tympanic membrane are transmitted to the vestibular window at a magnification of approximately 20 times. [Kazuyo Shimai] inner earThe inner ear is located inside the rocky part of the temporal bone, deeper than the middle ear, and consists of the bony labyrinth and the membranous labyrinth that occupies it. The bony labyrinth is divided into the vestibule (vestibular organ), bony semicircular canals, and the cochlea (cochlea), and the membranous labyrinth is a membranous obturator with the same shape as the bony labyrinth. Endolymphatic fluid (endolymph) flows through the membranous labyrinth, and there is perilymphatic tissue between the membranous labyrinth and the outer bony labyrinth, which is filled with perilymphatic fluid (perilymph). In other words, the membranous labyrinth is surrounded by perilymphatic fluid. Within the vestibule of the bony labyrinth are the saccule and utricle of the membranous labyrinth, both of which function as position sense organs. Additionally, the membranous semicircular canals (lateral, anterior, and posterior semicircular canals) and their ampullae within the semicircular canals of the bony labyrinth function as kinesthesia organs for detecting rotational acceleration. Each of these is responsible for the sense of balance. Inside the cochlea is the cochlear spiral duct, through which passes the same shaped membranous cochlear duct (total length approximately 30 mm). The organ of Corti (spiral organ) within the cochlear duct functions as an organ of hearing. [Kazuyo Shimai] FolkloreThere are folk tales about ear holes, hearing, earlobes, etc. Ear holes, along with nostrils, are thought to be entrances and exits for spirits, and old tales with motifs of bees and other insects entering and exiting during sleep can be seen as indicating this. Regarding the ability to hear, it is said that if you put your ear to the ground at the beginning of O-bon, you can hear the sounds of hell, and that when a person of the same age dies, there is a premonition phenomenon called mimigane, which is like a ringing in the ears. There is a spell to cover your ears immediately when you hear that a person of the same age has died, and act as if you did not hear it. On May 5th, there is an event called mimikujiri, where people chant "so that they may hear good things, and not hear bad things." Regarding earlobes, large ones are called fukumimi, but there is a legend that people who are born with small holes in their earlobes are born because their mothers wove cloth while pregnant. Although they are not human ears, grazing cattle are sometimes given various cuts called ear marks to mark their owners. [Shoji Inoguchi] [References] |Ear | | | | |©Shogakukan "> Ear structure ©Shogakukan "> Names of parts of the ear Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
普通は、脊椎(せきつい)動物の頭部にある聴覚器官と平衡覚器官との総称で、内耳(ないじ)、中耳(ちゅうじ)、外耳(がいじ)が含まれる。一方、音の受容器を一般的に耳とよぶことがあり、これには昆虫類の鼓膜(こまく)器官のようなものも含まれる。 脊椎動物の内耳は元来、魚類や水生両生類の側線器または感丘とよばれる水流や水の振動に反応する機械的刺激受容器が、体内に沈み込んでできたものと考えられている。内耳は「迷路」ともいわれるように複雑に入り組んだ袋状の器官の集まりで、その基本的要素は、前庭の卵形嚢(のう)と球形嚢、および半規管である。球形嚢にはつぼとよばれる部分があり、爬虫(はちゅう)類、鳥類、そして哺乳(ほにゅう)類において音の受容器として発達する。とくに哺乳類では長く伸びて渦巻をつくり蝸牛管(かぎゅうかん)となっている。これらの器官は聴側線系または側線迷路系と総称され、有毛細胞がその共通の受容器である。1個の有毛細胞には数十本の感覚毛がある。その一端にある1本の毛には、微小管が集まってできた繊毛軸糸の構造が認められる。繊毛軸糸は、運動性細胞小器官である繊毛に特徴的なもので、この感覚毛が繊毛起源であることを示唆する。この軸糸をもった感覚毛を動毛、もたないものを不動毛とよぶ。不動毛は繊毛とは異なる微絨毛(びじゅうもう)であり、その内部には規則正しく並んだアクチン繊維がある。側線器や半規管の有毛細胞にある感覚毛は、クプラとよばれるゼラチン様物質でできた薄膜に埋まっている。クプラが水流を受けて傾くと、そのゆがみが有毛細胞に受容器電位を生じさせる。有毛細胞の不動毛は、1本の動毛から離れるにしたがってしだいに短くなるように規則正しく並んでいる。クプラが動毛の側に倒れると有毛細胞は脱分極し、反対側に倒れると過分極する。有毛細胞にきている求心性(感覚性)神経は、つねにほぼ一定の頻度で自発性インパルスを出しているが、有毛細胞が脱分極すれば自発性インパルスの頻度は増加し、過分極すれば減少する。また有毛細胞には、遠心性神経による抑制性の支配が知られている。 脊椎動物の内耳の球形嚢と卵形嚢においては、感覚毛の上に、炭酸カルシウムの結晶が集まった平衡石がのっており、それに加えられる力により、重力の方向や直線運動の加速度を受容する。半規管は卵形嚢から出て半円を描き、また卵形嚢に戻る管状の器官で、管内部の液(内リンパ)の流動とそれによるクプラの傾きにより回転運動を受容する。脊椎動物のなかでも原始的な円口類では、卵形嚢と球形嚢が分離せず半規管が1個しかないものや、卵形嚢、球形嚢は分かれるが半規管が2個であるものがある。それ以外の脊椎動物では3個の半規管がそれぞれ直交する面内にあり、空間内のどのような面内における回転も受容できるようになっている。コイ、ナマズなど、ある種の硬骨魚類では、前から3個の椎骨の突起からできた骨片がうきぶくろと球形嚢を連絡している。このウェーバー器官とよばれる装置によって、水中音によるうきぶくろの圧変動は球形嚢に伝えられる。 陸上動物では、空気の振動である音波を内耳球形嚢の内リンパ液の振動として伝えるために、特別の力学的装置を必要とする。両生類以上の脊椎動物では第1鰓弓(さいきゅう)より発生した鼓室と鼓膜、鼓室小骨による中耳が発達する。耳小骨は、両生類から鳥類までは柱状の耳小柱1個であるが、哺乳類では3個となる。哺乳類で発達する蝸牛は、ワニ類や鳥類では基本的には直線的に伸びた管で、渦巻はつくっていない。これは音波を受容する器官で、管の長軸に沿って連なるコルチ器には3列と1列に並ぶ有毛細胞があり、その上を蓋膜(がいまく)が覆っている。哺乳類の成体の有毛細胞には動毛がない。蝸牛は音の周波数または高低を識別する器官で、蝸牛管が長いと周波数の識別能力も高くなる。哺乳類一般についていえば、小さな動物ほど高い周波数を受容する。ヒトの可聴範囲(20~2万ヘルツ)に比べて、ネコ(5万ヘルツ)やコウモリ(10万ヘルツ)は高い周波数の上限をもっている。一方、ゾウではヒトの可聴範囲の下限に近い低音がもっともよく聞こえる音であるといわれている。クジラは例外で、15万ヘルツ以上の高い音を聞くことができる。コウモリやクジラは、高い周波数の音を発し、その反響を聞いて物体の位置や方向を知る反響定位を行う。 昆虫類には、鼓膜器官とよばれる音の受容器がある。その場所は前肢の脛節(けいせつ)(コオロギ)、第2腹節(セミ)、後胸(ドクガ)など、種によってまちまちである。可聴範囲は高い周波数にずれており、ガは天敵であるコウモリの発する超音波によく反応する。一般に鼓膜器官は音波の周波数を分析する機構はもっていないが、音の強弱や音源の方向を探知する能力は優れている。 なお、俗称では哺乳類の外耳の耳介(じかい)(耳殻)やそれに似たものを耳という。この場合には、聴覚や平衡覚の受容器としての機能には関係なく外形の類似のみによる呼称である。プラナリアの頭部の突起や、ミミイカの胴から出ているひれを耳というのはこの例である。 [村上 彰] ヒトにおける耳聴覚と平衡感覚(平衡覚)をつかさどっている感覚器をいい、内部に聴覚受容器と平衡覚器を備えている。聴覚器は外耳、中耳、内耳の3主部から構成される。外耳は耳介と外耳道からなるが、俗に耳とよぶ場合には、耳介だけをさすこともある。 [嶋井和世] 耳介耳介の形状と大きさには個人差が著しいが、これは耳介の基礎となっている耳介軟骨によって形状と大きさが決まるためである(耳介軟骨は弾性軟骨)。耳介の下方につながっている耳垂(じすい)(ミミタブ)にはまったく軟骨がなく、おもに脂肪組織からなる。耳介内部の三角窩(か)には多量の汗腺(かんせん)と脂腺があり、耳珠(じしゅ)(外耳孔の前縁で後方に向かって突出した部分)の皮膚には比較的粗剛で短い耳毛(じもう)が生えるが、これは対珠(たいしゅ)(外耳孔の後ろ下方で耳珠に対して隆起した部分)にも及ぶ。耳介の外耳孔から鼓膜までの管状の部分が外耳道である。 [嶋井和世] 外耳道外耳道は約25ミリメートルの長さをもつが、内側の3分の2は骨性外耳道、外側の3分の1は軟骨性外耳道で、全体としてみると、その走行は緩いS状彎曲(わんきょく)を示している。すなわち、水平面から見ると外側部は前方に凸で、内側部は後方に凸となり、垂直面(額面)から見ると、外側部は下方に凸で、内側部は上方に凸となる。骨性外耳道には皮下組織がほとんどなく、骨壁がすぐ皮下にきているうえ、骨膜が皮膚と固着しているため、耳かきなどが触れると痛みを感じやすい。なお、乳児では骨性外耳道はまだほとんどできていないが、5、6歳になると軟骨性外耳道と骨性外耳道の長さはほぼ等しくなる。外耳道には耳介側頭神経(三叉(さんさ)神経の枝)と迷走神経の枝が分布しているため、舌や歯(ここにも同じく三叉神経が分布している)を刺激したとき、耳に痛みを感じることもある。また、外耳道を刺激すると、迷走神経の反射によってくしゃみが出たりすることもある。外耳道の最奥には鼓膜があり、鼓膜はその奥にある中耳と外耳道との境となっている。 [嶋井和世] 鼓膜と中耳鼓膜は、耳介を後方に引っ張ると外耳道がまっすぐになるため、外耳口から観察することができる。鼓膜は前上方から後下方へと斜めに長くついているが、新生児ではやや丸く、また、ほぼ垂直になっている。このため、新生児では耳介を下に引っ張ることによって鼓膜を見ることができる。鼓膜の外側面には、三叉神経の枝が分布しているので痛覚は鋭敏となる。鼓膜の奥の小さな部屋が中耳である。 中耳はおもに鼓室からなり、これに咽頭腔(いんとうくう)と連絡する耳管と副洞(乳突洞・乳突蜂巣(ほうそう))が付属している。鼓室の全形は両凹レンズ形を呈し、鼓膜とほぼ同様の傾斜をしている。鼓室の壁は六壁に区分されるが、鼓膜は外側壁にあたる。鼓室の後上方壁からは乳突洞口を経て乳突洞、さらにこれから乳突蜂巣に連なる孔(こう)があり、前下方壁からは耳管鼓室口を経て耳管に連なる孔がある。耳管は耳管咽頭口を経て咽頭に開口するため、鼓室の内腔には空気が存在し、耳管が開いていれば鼓室は大気圧と同じとなる。 鼓室内腔には、三つの耳小骨が関節で連結して連鎖をつくり、これには筋および靭帯(じんたい)が付属している。耳小骨の連鎖は鼓膜と内耳の前庭窓との間にわたっており、鼓膜側からツチ骨(槌骨)、キヌタ骨(砧骨)、アブミ骨(鐙骨)の順につながっている。ツチ骨柄(へい)の部分が鼓膜に付着し、アブミ骨底の部分が前庭窓にはまり込んでいる。鼓膜の振動は三つの耳小骨を伝わり前庭窓に達するが、前庭窓の広さは鼓膜の広さの約20分の1とされるため、鼓膜への刺激は前庭窓にはほぼ20倍に拡大されて伝わることとなる。 [嶋井和世] 内耳内耳は中耳からさらに奥深い側頭骨岩様(がんよう)部の内部にあって、骨迷路(こつめいろ)とその内部を占める膜迷路からなる。骨迷路は前庭(前庭器官)、骨半規管(骨三半規管)、蝸牛(かぎゅう)(蝸牛殻(かく))に区別され、膜迷路は骨迷路と同じ形の膜性の閉鎖管である。膜迷路の中には内リンパ液(内リンパ)が流れており、外側の骨迷路との間には外リンパ組織があって外リンパ液(外リンパ)が充満している。つまり外リンパ液が膜迷路を囲んでいることになる。 骨迷路の前庭内には膜迷路の球形嚢と卵形嚢があり、いずれも位置覚器の働きをもっている。また、骨迷路の半規管内にある膜性三半規管(外側・前・後半規管)とその膨大部は、回転加速度の運動覚器としての働きをもっている。そして、これらのそれぞれが平衡感覚をつかさどる。蝸牛はその内部に蝸牛ラセン管をもち、同形の膜性の蝸牛管(全長約30ミリメートル)が通っている。蝸牛管の中のコルチ器(ラセン器)は聴覚器としての働きをもっている。 [嶋井和世] 民俗耳の穴、聴力、耳たぶなどに関して、それぞれ民間伝承を伴う。耳の穴は、鼻の穴とともに霊の出入口と考えられており、睡眠中に蜂(はち)などが出入りする類(たぐい)のモチーフをもつ昔話は、それを示しているとみることができる。聞く機能に関しては、盆の初めに地面に耳を当てると、地獄の物音が聞こえるとか、同齢者が死ぬと耳鐘(みみがね)といって、耳鳴りのような予兆現象があるという。同齢者が死んだということを聞くと、すぐ耳塞(みみふさ)ぎをして、聞かなかったことにする呪法(じゅほう)がある。5月5日などには耳くじりといって、「よいこと聞くように、悪いこと聞かないように」と唱える行事もある。耳たぶに関しては、大きなものを福耳というが、生まれつき耳たぶに小穴のある人について、母親が妊娠中に機(はた)を織ったためだなどの伝承がある。人間の耳ではないが、放牧の牛に耳印(みみじるし)といって種々の切り込みを入れ、飼い主のしるしにすることがある。 [井之口章次] [参照項目] | | | | | |©Shogakukan"> 耳の構造 ©Shogakukan"> 耳介の各部名称 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Earwax (ear wax) - mimiaka (English spelling) cerumen
>>: The Mimānsa School (English spelling)
...From this perspective, it can be said that the...
Sterilization is the process of sterilizing food ...
This paper is paper that was once sold commerciall...
It was registered as a World Heritage Site (natura...
...Among these, biennial exhibitions such as the ...
...Anhydrous and 1,4,5,7 hydrates are known. The ...
Born: April 14, 1889, London [Died] October 22, 19...
...A philosopher of the mid-Meiji period. His pen...
...This book covers topics such as the developmen...
〘Noun〙 (oratio, also written as 「当辣諸」) A Christian...
…He was born into a poor family in New Orleans, t...
...In Jinya-cho in the northwest, there is the si...
… [Significant mimicry] This is a type of mimicry...
A character that appears in the American science f...
This explains the composition and use of Chinese ...