A general term for approximately 20 types of serum proteins that play an important role as mediators of various immune and allergic reactions in the body's defense mechanism against pathogenic microorganisms, etc. They exist in an inactive state in serum, but when activated by antigen-antibody complexes, aggregated gamma globulin, bacterial or animal cell membranes, etc., they exhibit various biological activities such as hemolysis, bacteriolysis, phagocytosis, and promotion of inflammation. The existence of complement has been known since the end of the 19th century. It was observed that certain pathogens were killed simply by adding animal serum, and it was reported that the bactericidal activity of this fresh serum was lost by heating it at 56°C for 30 minutes. This heat-labile bactericidal substance was named alexin (defense factor) by German bacteriologist Hans Buchner (1850-1902) in 1889. In addition, German bacteriologist Richard Friedrich Johannes Pfeiffer (1858-1945) discovered in 1894 that when cholera bacteria were introduced into the abdominal cavity of a guinea pig immunized with cholera bacteria, the bacteria were killed and dissolved (bacteriolysis) (Peiffer phenomenon). In 1905, Belgian bacteriologist Borde discovered that the bacteriolysis phenomenon was caused by a heat-resistant substance (antibody) and a heat-labile serum component (alexin) in the serum of the immunized animal, and that both were essential. Thus, alexins came to be called complements, since they complement the function of antibodies. Later, it was discovered that some bacteria and viruses react directly with complements, even in the absence of antibodies, and these are now collectively called the complement system, with the reaction pathway that works in cooperation with conventional antibodies being called the classical pathway and the pathway that reacts directly being called the second pathway (alternative pathway). Factors that control the reaction of the complement system are also known, and are called regulatory proteins. Among the proteins in the complement system, proteins that are directly involved in the activation reaction of complement are called complement components, and are numbered roughly according to the order of activation, starting with the initial letter C of complement. Each component that changes from an inactive state to an active state is represented by a horizontal line (bar) below the component symbol. In addition, when a complement component changes to an active form during the activation process with the cleavage of a peptide chain, it is represented by adding the letters a and b after the component. The complement components of the alternative pathway are called factor B, factor D, and properdin (P), named after their discoverers. [Noriaki Yanagishita] Complement pathway and functionIn general, even if antibodies react with bacteria or viruses (antigens) that have invaded the body and form antigen-antibody complexes, they do not become detoxified by themselves. Instead, the complement present in the serum must come into contact with the antigen-antibody complex and react before the pathogen can be destroyed or phagocytosed. The complement in serum that performs this function consists of nine component proteins, named C1 through C9, and reacts with antigen-antibody complexes in the order of C1, C4, C2, C3, C5, C6, C7, C8, and C9 to become activated. Of these, C1 is a complex with a molecular weight of about 740,000 formed by the assembly of one molecule of C1q and two molecules of C1r and C1s, and binds to the antigen-antibody complex via C1q. This binding of C1q activates C1r and C1s in turn, and C1s then breaks down C4 and C2 into fragments C4a, C4b, C2a, and C2b, respectively. Among these, C4b and C2a, which have larger molecular weights, combine to form the enzymatically active complex C4b2a , which then degrades C3 into C3a and C3b to form C4b2a3b . This then degrades C5 into C5a and C5b, and so on, with successive enzyme reactions leading to the activation process. C5b then automatically assembles with C6, C7, C8, and C9 in sequence to form a gigantic complex with a molecular weight of about 1 million, which exists bound to the surface of the starting material, the antigen-antibody complex. The above reaction pathway is the classical pathway. The second pathway is a reaction pathway seen in the early stages of infection before the appearance of antibodies, and is initiated by the contact of factors B, D, and C3 with the surface of the pathogen, which is the initiator. In other words, without the action of C1, C4, or C2, factor D acts as C1, factor B acts as C2, and the first C3 acts as C4, and C3 is gradually decomposed into C3a and C3b, and when this C3b accumulates on the surface, factors B, D, and properdin act on it to form C3bBDP . This causes new C3 to be decomposed again, and when some of the resulting C3b binds to C3bBDP , it decomposes C5. The reaction below C5 is the same as the classical pathway. The fragments of complement components and intermediate products formed by the binding of several complement components generated during both of these pathways are extremely beneficial to the body in terms of biological defense. For example, C3b bound to antigen-antibody complexes or the cell surface of pathogens not only induces the C5 and subsequent reactions, but is also easily captured and phagocyted by leukocytes, macrophages, and other phagocytes. This is because the phagocytes have C3b receptors on their surfaces that recognize and specifically bind to C3b bound to antigen-antibody complexes. C3a and C5a also act on surrounding mast cells, causing them to release histamine and increase vascular permeability. Furthermore, C5a has a strong chemotactic property that attracts white blood cells, promoting local phagocytosis. The giant complexes that are the final products of the reactions cause membrane damage to target cells, resulting in hemolysis and bacteriolysis. The action of the complement system, like the immune response centered on lymphocytes, does not always bring about favorable results. For example, in addition to the allergic reaction caused by the release of histamine mentioned above, when the body's own red blood cells or thyroid gland cells, which do not normally act as antigens, become foreign bodies and antibodies are produced against them, autoimmune diseases such as autoimmune hemolytic anemia and Hashimoto's disease can occur. Nephritis, which occurs in conjunction with systemic lupus erythematosus, is also thought to be an immune complex disease caused by the activation of antigen-antibody complexes deposited locally by the complement system. These are cases in which the function of the complement system as a biological defense backfires due to abnormally produced antibodies. Regulatory proteins act as monitors for the complement system, which sometimes brings about unfavorable results for the body. Nearly ten types of regulatory proteins, such as C1 inactivator and C3b inactivator, are known, which inactivate excess C1r and C1s, as well as C3a, C3b, C4b, and C5a, respectively. Although extremely rare, there is a condition called complement deficiency, which is a genetic condition in which the production of complement components is deficient or reduced. Patients with this condition, like those with antibody deficiency, are susceptible to various infectious diseases and often develop severe symptoms. Furthermore, if the regulatory protein is deficient, the production of complement components goes unchecked, causing various diseases. [Noriaki Yanagishita] Complement fixation reactionThis is a serological reaction that is widely used for the Wasserman reaction of syphilis, auxiliary diagnosis of viral infections, and research purposes. It utilizes the nonspecific reaction of complement with various antigen-antibody complexes. It is used to detect antibodies in serum and antigens (cell membrane antigens, granular antigens, soluble antigens) in culture fluid, but the antibodies that can be detected are limited to those that activate the classical pathway. This reaction is divided into the first stage, in which a certain amount of complement is added to the mixture of antigen and antibody and reacted at a low temperature, and the second stage, in which sensitized erythrocytes are added and the amount of remaining complement is measured. If an antigen-antibody reaction occurs in the first stage, complement is consumed and no hemolysis is observed in the second stage, but conversely, if an antigen-antibody reaction does not occur in the first stage, complement is not consumed and hemolysis is observed in the second stage. For clinical testing, it is used to check whether antibodies that react with known antigens are present in the patient's serum, and conversely, it is used to check for the presence of antigens that react with known antibodies. Fresh guinea pig serum that has been absorbed into sheep's red blood cells is often used as a source of complement. In addition, if the reaction solution contains bacteria or agglutinated γ-globulin, the test result will be positive, but since it is not based on an antigen-antibody reaction, it is called a false positive. Therefore, it is necessary to remove impurities before performing the complement fixation reaction. [Noriaki Yanagishita] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
病原微生物などに対する生体防衛機構のなかで、種々の免疫反応やアレルギー反応の媒介物質として重要な役割を果たしている約20種類の血清タンパク質の総称。血清中では不活性の状態で存在するが、抗原抗体複合物、凝集γ(ガンマ)‐グロブリン、細菌や動物の細胞膜などによって活性化されると、溶血反応や溶菌反応、貪食(どんしょく)作用や炎症の促進など種々の生物活性を示すようになる。 補体の存在は19世紀末ころから知られていた。すなわち、ある種の病原菌は動物の血清を加えるだけで死滅することが観察され、この新鮮血清に含まれる殺菌作用は56℃で30分の加熱により失われることが報告された。この易熱性の殺菌作用をもつ物質は、ドイツの細菌学者ブフナーHans Buchner(1850―1902)によって1889年、アレキシンalexin(防御素)とよばれた。また、ドイツの細菌学者パイフェルRichard Friedrich Johannes Pfeiffer(1858―1945)は1894年、コレラ菌で免疫されたモルモットの腹腔(ふくこう)内にコレラ菌を侵入させると、菌が死滅溶解(溶菌)する現象(パイフェル現象)をみいだし、ベルギーの細菌学者ボルデは1905年、この溶菌現象には免疫動物の血清中にある耐熱性の物質(抗体)と易熱性の血清成分(アレキシン)が関与し、この両者が不可欠であることを発見した。かくして、アレキシンは抗体の働きを補完するという意味で、補体とよばれるようになった。さらにその後、抗体がなくても細菌やウイルスが直接補体と反応するものもあることがわかり、補体系と総称し、従来の抗体と協同作用を営む反応経路を古典的経路、直接反応する経路を第二経路(代替経路)とよんでいる。また、この補体系の反応を制御する因子も知られ、これを制御タンパク質とよぶ。 補体系タンパク質のうち、補体の活性化反応に直接関与するタンパク質を補体成分といい、補体の頭文字Cに活性化の順序におおむね従った番号がつけられ、非活性状態から活性状態に変わった各成分に対しては成分記号の下に横線(バー)をつけて表す。また、活性化の過程で補体成分がペプチド鎖の断裂を伴って活性型に変化する場合には、補体成分の後方にa、bをつけて表す。なお、第二経路の補体成分は発見者の命名に従ってB因子、D因子、プロペルジン(P)とよんでいる。 [柳下徳雄] 補体の反応経路と働き一般に、生体内に侵入してきた細菌やウイルス(抗原)に抗体が反応して抗原抗体複合物を形成しても、それだけで無毒化されることはなく、血清中に存在する補体が抗原抗体複合物に接触して反応し、初めて病原体が破壊されたり食細胞に貪食されるようになる。このような働きをする血清中の補体は九つの成分タンパク質からなり、それぞれC1からC9まで名づけられているが、抗原抗体複合物に対してはC1、C4、C2、C3、C5、C6、C7、C8、C9の順に反応して活性化される。このうち、C1は1分子のC1qと2分子のC1rおよびC1sが集合して形成された分子量約74万の複合体で、抗原抗体複合物とはC1qを介して結合する。このC1qの結合によってC1rとC1sが順次活性化され、さらにC1sがC4とC2をそれぞれC4a,C4bとC2a,C2bの各フラグメント(断片)に分解する。このうち分子量の大きいC4bとC2aが結合して酵素活性をもった複合体C4b2aを形成し、これがまたC3をC3aとC3bに分解してC4b2a3bを形成する。続いてこれがC5をC5aとC5bに分解するというように、連続した酵素反応によって活性化が進行し、その後C5bはC6、C7、C8、C9を順次自動的に集合して分子量約100万の巨大複合体を形成、始動物質である抗原抗体複合物の表面に結合して存在する。以上の反応経路が古典的経路である。 第二経路は抗体出現前の感染初期などにみられる反応経路で、始動物質である病原体の表面にB因子、D因子、C3が接触することによって開始される。すなわち、C1、C4、C2の作用を受けることなく、D因子がC1、B因子がC2、最初に接触したC3がC4のような働きをそれぞれ行って、C3はC3aとC3bに徐々に分解され、このC3bが表面に蓄積されてくると、これにB因子、D因子、プロペルジンが作用してC3bBDPを形成する。これにより新しくC3がふたたび分解され、生じたC3bの一部がC3bBDPに結合すると、C5を分解するようになる。C5以下の反応は古典的経路と同じである。 これら両経路の途上で生成される補体成分の断片やいくつかの補体成分が結合した中間生成物は、生体防御の面で生体側にきわめて有利に作用する。たとえば、抗原抗体複合物や病原体の細胞表面に結合したC3bはC5以降の反応を誘導するばかりでなく、白血球やマクロファージなどの食細胞に容易にとらえられて貪食されるようになる。これは食細胞表面に抗原抗体複合物などに結合したC3bを認識し、これと特異的に結合するC3b受容体(レセプター)が存在することによる。また、C3aやC5aは周辺の肥満細胞に作用してヒスタミンなどを放出させ、血管の透過性を亢進(こうしん)させる。さらにC5aは白血球を呼び寄せる走化性が強く、局所での貪食作用を促進させる。なお、反応の最終産物である巨大複合体は、標的細胞の膜障害を引き起こして溶血反応や溶菌反応などを示すようになる。 このような補体系の作用も、リンパ球細胞を中心とした免疫反応と同様に、いつも有利な結果だけをもたらすわけではない。たとえば、前述のヒスタミン放出によるアレルギー反応をはじめ、本来は抗原にならない自己の赤血球や甲状腺(せん)細胞などが生体にとって異物となり、これに対する抗体が産生されると、自己免疫性溶血性貧血や橋本病などの自己免疫疾患がみられるほか、全身性エリテマトーデスに併発する腎炎(じんえん)なども、局所に沈着した抗原抗体複合物が補体系による活性化で引き起こされる免疫複合体病と考えられている。これらは、異常に産生された抗体により、生体防御という補体系の機能が裏目に出たものである。ときに生体に好ましくない結果をもたらす補体系の監視役をするのが制御タンパク質で、C1インアクチベーターやC3bインアクチベーターなど10種近くが知られ、それぞれ過剰に生じたC1rやC1sのほか、C3aやC3bあるいはC4bやC5aなどを失活させる。 なお、きわめてまれではあるが補体欠損症とよばれるものがあり、遺伝的に補体成分の産生が欠損または低下している状態をいう。この患者は、抗体が欠損している場合と同様に、種々の感染症にかかりやすく、かつ重篤化することが多い。また、制御タンパク質が欠損すると補体成分産生の歯止めがなくなるので、種々の病気を引き起こすことになる。 [柳下徳雄] 補体結合反応梅毒のワッセルマン反応やウイルス感染症の補助診断、あるいは研究用に広く用いられている血清反応で、種々の抗原抗体複合物に対して補体が非特異的に反応することを応用したものである。血清中の抗体や培養液中の抗原(細胞膜抗原、粒状抗原、可溶性抗原)などを検出するために用いられるが、検出できる抗体は古典的経路を活性化するものに限られる。この反応は、抗原と抗体の混合液に一定量の補体を加えて低温で反応させる第一段階と、感作血球を加えて残存する補体量を測定する第二段階に分けられる。第一段階で抗原抗体反応がおこれば補体が消費されて第二段階で溶血反応がみられないが、逆に第一段階で抗原抗体反応がおこらないと補体が消費されないので第二段階では溶血反応がみられる。臨床検査用には、既知の抗原に反応する抗体が患者の血清中に存在するかどうかを調べるほか、逆に既知の抗体を用いてこれに反応する抗原の存在を調べたりする。この補体源としては、あらかじめヒツジの赤血球に吸収させたモルモットの新鮮血清が用いられることが多い。 なお、反応液中に細菌や凝集γ‐グロブリンなどが含まれていた場合にもテスト結果が陽性となるが、抗原抗体反応によらないので疑陽性とよばれる。したがって、不純物を除いてから補体結合反応を行う必要がある。 [柳下徳雄] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
A sculptor who worked mainly in France. Born in Sm...
…Used for refractories, emergency construction, c...
…It is often shown in textbooks as a model to exp...
…The classification of birds varies among scholar...
The name Kurdish emerged after the Arab conquest ...
Battambang. A city in western Cambodia, about 250 ...
Compounds of rhenium and sulfur include rhenium su...
…In the 8th to 9th century, Wang Jian of the midd...
...The large fruits grow on an upright stem, maki...
In France, secondary teachers (1897) and primary ...
One of the Japanese legends about a rich man. It ...
...In the past, such individual health checkups w...
(〈Japanese〉 ear+clip) A type of accessory worn on ...
A term used in the Income Tax Act. Wages, salaries...
…After the war, he graduated from Oxford Universi...