Normal - housen (English spelling) normal

Japanese: 法線 - ほうせん(英語表記)normal
Normal - housen (English spelling) normal

At a point P 0 on a curve in a plane, the straight line that is perpendicular to the tangent at that point is called the normal to the curve at that point. When a curve is given in the form y=f(x), the equation of the tangent at point P 0 (x 0 ,y 0 ) on this curve is yy 0 =f'(x 0 )(xx 0 ), so the equation of the normal is xx 0 +f'(x 0 )(yy 0 )=0.

[Osamu Takenouchi]

Normal Vector

When a plane curve is given in the form x = f(t), y = g(t), t = (f'(t 0 ), g'(t 0 )) is the tangent vector, but the vector n = (-g'(t 0 ), f'(t 0 )), which is obtained by rotating this 90 degrees in the positive direction, is called the normal vector. In particular, when the length s measured from a point on the curve along the curve is used as a parameter, t is a unit vector and n is the normal unit vector, and if a = (f"(s 0 ), g"(s 0 )), then a = κn. κ is the curvature of the curve at this point.

[Osamu Takenouchi]

Space curve case

At point P0 on a curve, all the straight lines perpendicular to the tangent to the curve at that point lie on a single plane. This plane is called the normal plane. In the equation x=f(s), y=g(s), z=h(s) which expresses a curve using the length s of the curve, t=(f'( s0 ),g'( s0 ),h'( s0 )) is the tangent unit vector, but a=(f"( s0 ),g"( s0 ),h"( s0 )) is a vector perpendicular to it. The unit vector in this direction is called the principal normal vector. If this is expressed in terms of n, then a=κn,κ≧0.κ is called the curvature. The third right-handed vector b which is perpendicular to t and n is called the binormal vector.

[Osamu Takenouchi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

平面上で曲線上の点P0において、その点における接線に直交する直線を、その点における曲線の法線という。曲線がy=f(x)の形で与えられているとき、この上の点P0(x0,y0)における接線の方程式はy-y0=f′(x0)(x-x0)であるから、法線の方程式はx-x0+f′(x0)(y-y0)=0となる。

[竹之内脩]

法線ベクトル

平面上の曲線がx=f(t),y=g(t)の形で与えられているとき、t=(f′(t0),g′(t0))が接ベクトルであるが、これを90度正の向きに回転させたベクトルn=(-g′(t0),f′(t0))を法線ベクトルという。とくに、曲線に沿って曲線上の1点から測った長さsをパラメーターに用いるときは、tは単位ベクトルで、nは法線単位ベクトルとなり、a=(f″(s0),g″(s0))とすれば、a=κnとなる。κはこの点における曲線の曲率である。

[竹之内脩]

空間曲線の場合

曲線上の点P0において、その点における曲線の接線に垂直な直線の全体は一つの平面上にある。この平面を法平面という。曲線を、曲線の長さsを用いて表した式x=f(s),y=g(s),z=h(s)において、t=(f′(s0),g′(s0),h′(s0))は接単位ベクトルであるが、a=(f″(s0),g″(s0),h″(s0))はこれに直交するベクトルとなる。この方向、向きの単位ベクトルを主法線ベクトルという。これをnで表すと、a=κn,κ≧0となる。κを曲率という。t、nに直交する右手系第三のベクトルbを従法線ベクトルという。

[竹之内脩]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Feng-shan (English spelling)

>>:  Snowbreak forest - Bosetsurin

Recommend

Iron wheel

A Noh piece. It can be used as a fourth or fifth ...

Edo Shogunate

This refers to the governing body of the Tokugawa...

Begging monk - Ganninbouzu

A street performer in the guise of a monk. A dais...

Gursky, H. - Gursky

…X-ray astronomy began in 1962-63 when Americans ...

Imizu Shrine

It is located in Furushiro, Takaoka City, Toyama ...

Vacuum distillation

Distillation under reduced pressure. Generally, th...

Pharmacy - Drugstore

〘 noun 〙 A house that makes and sells medicines. A...

Bandwidth Compression - Taiikiashuku

Bandwidth compression : In the field of informatio...

Rock paint - Iwaenogu

Paints made from naturally occurring minerals. Ino...

Rabdosia umbrosa (English spelling) Rabdosia umbrosa

…[Murata Gen]. … *Some of the terminology that me...

Echizen paper

Washi paper produced near Echizen City, Fukui Pre...

Clethra barbinervis - Clethra barbinervis

A deciduous tree of the Cleavaceae family. It grow...

Kira Kozukenosuke

⇒ Yoshihisa Kira Kirayoshinaka Source: About Shoga...

Solar observation - taiyokansoku (English) solar observation

Humans, blessed with the light and heat of the sun...

Cartography

A general term for the study of map-related subje...