At a point P 0 on a curve in a plane, the straight line that is perpendicular to the tangent at that point is called the normal to the curve at that point. When a curve is given in the form y=f(x), the equation of the tangent at point P 0 (x 0 ,y 0 ) on this curve is yy 0 =f'(x 0 )(xx 0 ), so the equation of the normal is xx 0 +f'(x 0 )(yy 0 )=0. [Osamu Takenouchi] Normal VectorWhen a plane curve is given in the form x = f(t), y = g(t), t = (f'(t 0 ), g'(t 0 )) is the tangent vector, but the vector n = (-g'(t 0 ), f'(t 0 )), which is obtained by rotating this 90 degrees in the positive direction, is called the normal vector. In particular, when the length s measured from a point on the curve along the curve is used as a parameter, t is a unit vector and n is the normal unit vector, and if a = (f"(s 0 ), g"(s 0 )), then a = κn. κ is the curvature of the curve at this point. [Osamu Takenouchi] Space curve caseAt point P0 on a curve, all the straight lines perpendicular to the tangent to the curve at that point lie on a single plane. This plane is called the normal plane. In the equation x=f(s), y=g(s), z=h(s) which expresses a curve using the length s of the curve, t=(f'( s0 ),g'( s0 ),h'( s0 )) is the tangent unit vector, but a=(f"( s0 ),g"( s0 ),h"( s0 )) is a vector perpendicular to it. The unit vector in this direction is called the principal normal vector. If this is expressed in terms of n, then a=κn,κ≧0.κ is called the curvature. The third right-handed vector b which is perpendicular to t and n is called the binormal vector. [Osamu Takenouchi] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
平面上で曲線上の点P0において、その点における接線に直交する直線を、その点における曲線の法線という。曲線がy=f(x)の形で与えられているとき、この上の点P0(x0,y0)における接線の方程式はy-y0=f′(x0)(x-x0)であるから、法線の方程式はx-x0+f′(x0)(y-y0)=0となる。 [竹之内脩] 法線ベクトル平面上の曲線がx=f(t),y=g(t)の形で与えられているとき、t=(f′(t0),g′(t0))が接ベクトルであるが、これを90度正の向きに回転させたベクトルn=(-g′(t0),f′(t0))を法線ベクトルという。とくに、曲線に沿って曲線上の1点から測った長さsをパラメーターに用いるときは、tは単位ベクトルで、nは法線単位ベクトルとなり、a=(f″(s0),g″(s0))とすれば、a=κnとなる。κはこの点における曲線の曲率である。 [竹之内脩] 空間曲線の場合曲線上の点P0において、その点における曲線の接線に垂直な直線の全体は一つの平面上にある。この平面を法平面という。曲線を、曲線の長さsを用いて表した式x=f(s),y=g(s),z=h(s)において、t=(f′(s0),g′(s0),h′(s0))は接単位ベクトルであるが、a=(f″(s0),g″(s0),h″(s0))はこれに直交するベクトルとなる。この方向、向きの単位ベクトルを主法線ベクトルという。これをnで表すと、a=κn,κ≧0となる。κを曲率という。t、nに直交する右手系第三のベクトルbを従法線ベクトルという。 [竹之内脩] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Feng-shan (English spelling)
>>: Snowbreak forest - Bosetsurin
〘Noun〙 A Buddhist term. The six consciousnesses (r...
1905‐75 British biologist. Graduated from Cambridg...
…In ancient Greek it was Hellas, in modern Greek ...
…The main event in the birth and care ceremony is...
A warm-blooded animal whose body temperature varie...
...The genus Di (two) morphe (shape) theca (wrap)...
A pulse modulation method for pulse communication...
...In a broad sense, it means self-discipline aim...
A village in Nishitama County, west of Tokyo. Popu...
This refers to intestinal gas released from the a...
An abandoned temple in Ukyo Ward, Kyoto City. It ...
French composer. Born in Paris. He began piano le...
An organization of printing workers established i...
A nomadic Turkic tribe in the Azerbaijan region of...
…Mechanical vacuum pumps are similar to general g...