This is a science that seeks to elucidate the phenomenon of life by investigating the biological effects of radiation at the molecular, cellular, and individual levels. The effects of radiation on humans have been of interest since the discovery of X-rays, but when radiation began to be used in medicine for diagnosis and treatment, the damage caused by exposure to radiation became more severe, and research into its biological effects was required. In 1927, H. J. Muller succeeded in artificially inducing mutations in fruit flies using X-rays, and radiation began to be used in breeding as a means of obtaining useful mutations, and it also attracted attention as a powerful means of elucidating the extremely biological phenomenon of genetics. In the atomic age, research into the damage caused by atomic bombs and nuclear tests and medical measures are being carried out. Furthermore, as radiation becomes more widely used in medicine, industry, power generation, and society, the risk of exposure to radiation also increases, so radiobiology, which is the basis for elucidating the actual state of the damage and preventing the danger, must fulfill its social responsibility in the atomic age. The radiation that is the subject of research in radiobiology includes electromagnetic waves such as ultraviolet rays, X-rays, and gamma rays, as well as high-speed charged particles and neutrons. Unlike infrared rays and visible light, these radiations have extremely high energy photons or particles, so when cells are irradiated with them, the molecules within the cells are ionized or excited, and as a result, chemical changes occur according to the amount of radiation absorbed, no matter how small the amount of radiation energy. These changes occur uniformly in the cell components, but changes in biopolymers, which play an important role in the expression and maintenance of life, especially genetic DNA (deoxyribonucleic acid), have a significant effect on the function of the cell, and even the smallest changes can cause fatal damage to the cell, such as cell death or carcinogenesis. In recent years, research into the radiosensitivity of cells has revealed that radioresistant cells have the ability to repair DNA damage caused by radiation, and that this repair is achieved by enzymes present in the cells. Because the production of enzymes is controlled by genes, radioresistance is thought to be a skill that organisms acquired during the process of evolution in a radiation environment. It is also believed that radiation-induced cell mutations are due to errors during this repair process. In a grown, multicellular animal, many organs share functions to maintain the individual. Among these, organs known as the cell regeneration system, such as the hematopoietic, digestive, reproductive, and skin, are replenished with cells that perform their main functions by constantly dividing, and are therefore highly sensitive to radiation. When such an individual is exposed to radiation, even if all of the individual's cells and organs are uniformly absorbed in proportion to the dose, the aforementioned cell regeneration organs, which play an important role in maintaining the individual, are severely damaged. This can be fatal, causing the individual's death due to hematopoietic or intestinal disorders, or reproductive or genetic disorders. In this way, research into radiation biology is shedding light on the mechanisms of life maintenance and mutation in cells and multicellular individuals. [Tsugio Yotani] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
放射線の生物作用を分子、細胞、個体のレベルで調べることによって生命現象を解明しようとする学問をいう。放射線の人間に対する影響は、X線が発見されたときから注目されたが、医学で診断や治療に利用されるようになると、使用者の被曝(ひばく)による障害も著しくなり、生物作用の研究が要望された。1927年、H・J・マラーがX線によってショウジョウバエに人為的突然変異を誘発させることに成功してからは、放射線は有用な突然変異を得る手段として育種に利用されるようになるとともに、遺伝というきわめて生物学的な現象解明の有力な手段として注目されるようになった。原子力時代に入って、原爆や核実験による障害の究明と医療対策が進められている。さらに放射線が医療に、産業に、発電に、社会的に広く利用されるようになると、被曝の危険も高まるので、その障害の実態を解明し危険を防止する基礎となる放射線生物学は、原子力時代においてその社会的責任を果たさねばならないものとなっている。 放射線生物学の研究対象となる放射線は、紫外線、X線、γ線(ガンマせん)などの電磁波や、高速荷電粒子、中性子などである。これらの放射線は赤外線や可視光線と異なり、その光子または粒子のもつエネルギーがきわめて高いので、細胞が照射されると細胞内分子はイオン化されるかまたは励起状態になり、その結果吸収される放射線のエネルギーがいかにわずかでも、その量に応じた化学変化がおこる。このような変化は細胞成分に均一におこるが、生体分子のうちで生命の発現と維持に重要な役割をもつ生体高分子、とくに遺伝子DNA(デオキシリボ核酸)におこる変化は細胞の機能に重大な影響を及ぼし、いかにささいな変化でも細胞は細胞死や発癌(がん)などの致命的な障害を受ける。 近年、細胞の放射線感受性の研究から、放射線抵抗性の細胞は放射線によるDNAの損傷を修復する能力があり、この修復は細胞に存在する酵素によっていることが明らかになった。酵素の生成は遺伝子に支配されているので、放射線抵抗性は、生物が放射線環境下での進化の過程で獲得した能力と考えられている。また放射線による細胞の変異は、この修復の際の誤りによると考えられるようになった。 多細胞からなる成長した動物個体では、多くの器官が機能を分担してその個体を維持している。このうち造血器官、消化器官、生殖器官、皮膚など細胞再生系といわれる器官は、その主要な機能を果たす細胞が絶えず分裂をして補給され、したがって放射線に対する感受性が高い。このような個体に放射線が当たると、個体の全細胞、全器官に一様に線量に応じたエネルギーが吸収されても、個体維持により重要な働きをしている前記の細胞再生系器官が著しい障害を受ける。これが致命傷となって造血障害、腸障害などによる個体死がおこったり、生殖障害や遺伝障害がおこる。このように放射線生物学の研究によって、細胞および多細胞個体の生命維持の機構や突然変異の機構が明らかになってきている。 [代谷次夫] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Biological effect of radiations
>>: Radiation Hazard Prevention Law
Multivariate analysis refers to a method of analyz...
…He studied medicine in various places and became...
...Finland folklorist. Lecturer at the University...
1899‐1963 German photogrammetry expert and Central...
…[Shigeo Gamou]. … *Some of the terminology that ...
A turtle of the Eridan family. There are 12 subspe...
A Hindu religious and social ritual. It is an init...
…No treatment is necessary. Caput caput should be...
...Therefore, the 200 years from the 11th century...
...Therefore, when lactic acid bacteria are used ...
…The category to which Japanese agriculture belon...
...They were ranked second only to the bangashira...
...Combs and mirrors are the possessions of the g...
A wooden walkway that runs around the perimeter o...
...The spadix, surrounded by a spadix, has female...