This theorem states that when a function f ( x ) is differentiable between a and b , there is at least one point between a and b that has a tangent that is parallel to the line segment connecting the points corresponding to x = a and x = b on a graph ( ). This is an important theorem that serves as the basis for deriving various theorems in differential and integral calculus. For example, the following two corollaries can be derived from the mean value theorem: [1] If f '( x ) = 0 at all times in a certain interval, then f ( x ) is a constant in this interval. [2] If f '( x ) is always ≥ 0 at all times in a certain interval, then f ( x ) is monotonically increasing in this interval. The precise definition of the mean value theorem is as follows: If a function f ( x ) is continuous for a ≦ x ≦ b and differentiable for a < x < b , then it is true that a < c < b , [Osamu Takenouchi] Rolle's theoremTo prove the mean value theorem, one usually first deals with the special case of f ( a ) = f ( b ). When f ( a ) = f ( b ), it is called Rolle's theorem, and is stated as follows: "If a function f ( x ) is continuous for a ≦ x ≦ b , differentiable for a < x < b , and f ( a ) = f ( b ), then there exists a function c such that f '( c ) = 0 for a < c < b " ( ).[Osamu Takenouchi] Finite Increment Theorem "If a function f ( x ) is continuous for a ≦ x ≦ b , differentiable for a < x < b , and | f '( x )| ≦ M , then [Osamu Takenouchi] Mean value theorem for integrals "If f ( x ) is continuous for a ≦ x ≦ b , then a ≦ c ≦ b , [Osamu Takenouchi] Cauchy's Mean Value Theorem "Let the functions f ( x ), g ( x ) be continuous for a ≦ x ≦ b , differentiable for a < x < b , and g '( x ) never be 0. Then, [Osamu Takenouchi] Mean value theorem for functions of several variables Let us consider the case of two variables. If f ( x , y ) is partially differentiable in a neighborhood of ( a , b ), then f ( a + h , b + k )- f ( a , b ) for 0 < θ < 1. [Osamu Takenouchi] ©Shogakukan "> Mean value theorem explanation diagram (Figure A) ©Shogakukan "> Mean value theorem (Roll's theorem) [Figure B] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
関数f(x)がaとbの間で微分可能であるとき、グラフの上でx=a,x=bに対応する点を結ぶ線分に平行な接線を有する点がaとbの間に少なくとも一つあることを主張する定理( )。これは微分積分法における諸定理を導く基礎になる重要な定理である。たとえば、平均値の定理から次の二つの系が帰結できる。〔1〕ある区間で、つねにf′(x)=0ならば、f(x)はこの区間で定数である。〔2〕ある区間で、つねにf′(x)≧0ならば、f(x)はこの区間で単調増加である。 平均値の定理を精密に述べると、次のようになる。関数f(x)が、a≦x≦bで連続、a<x<bで微分可能ならば、a<c<bで、 [竹之内脩] ロルの定理平均値の定理を証明するためには、普通その特別な場合であるf(a)=f(b)のケースを先に扱う。f(a)=f(b)であるときをロルの定理といい、次のように表される。「関数f(x)がa≦x≦bで連続、a<x<bで微分可能で、f(a)=f(b)であるならば、a<c<bでf′(c)=0を満たすようなcが存在する」( )。[竹之内脩] 有限増分の定理「関数f(x)がa≦x≦bで連続、a<x<bで微分可能で、|f′(x)|≦Mであるならば、 [竹之内脩] 積分に関する平均値の定理「f(x)がa≦x≦bにおいて連続ならば、a≦c≦bで、 [竹之内脩] コーシーの平均値の定理「関数f(x),g(x)がa≦x≦bで連続、a<x<bで微分可能であり、かつg′(x)はけっして0にならないものとする。そうすれば、 [竹之内脩] 多変数関数に関する平均値の定理二変数の場合について述べる。「f(x,y)が(a,b)のある近傍で偏微分可能ならば、0<θ<1で [竹之内脩] ©Shogakukan"> 平均値の定理説明図〔図A〕 ©Shogakukan"> 平均値の定理(ロルの定理)〔図B〕 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Average wage - Heikinchingin
>>: Mean solar day - Heikin Taiyou Jitsu (English spelling) mean solar day
A Chinese physician during the late Jin Dynasty an...
The first licensed female doctor in modern Japan....
This is a representative dry lacquer sculpture of ...
〘Noun〙 Crimson made during the coldest months of t...
A city on the Tyrrhenian Sea in the province of Ro...
A musical piece from the early Joseon Dynasty of K...
[noun] (suru) The act of tying up a ship, balloon,...
…[Morizumi Nakamura]. … *Some of the terminology ...
…The import of Western music in the early Meiji p...
1648-1726 A samurai and historian from the early ...
…In the Edo period, it was a general term for pro...
A book on agriculture. The author was Tsuchiya Ma...
Abbreviation for World Confederation of Labour (WC...
〘 noun 〙 The history of plastic arts such as paint...
Abbreviation for charity organization society (mov...