German mathematician. Born in Erlangen to Max Noether (1844-1921), known for his theory of algebraic curves. He first studied invariant theory under his father's friend Paul Gordan (1837-1912). In 1915, he moved to Göttingen and began research under Hilbert. First, in commutative rings, he rephrased the ideal basis theorem as the approximate chain rule, and investigated the decomposition into quasi-prime ideals and their uniqueness under that rule. The approximate chain rule is nothing but a maximal condition, and today, rings that satisfy the maximal condition are called Noetherian rings. He then achieved the axiomatic construction of Dedekind rings, in which he introduced the double chain rule in addition to the approximate chain rule, and the concept of integral closure. In his research on discriminants, he effectively incorporated local considerations, and this research is thought to have marked a turning point from commutative rings to noncommutative rings. Noether's true worth, the true value of abstract algebra, lies in the theory of non-commutative rings, and in the completion of the theory of quasi-simple rings, including group rings. In other words, she showed that a simple ring A is isomorphic to a perfect matrix ring in an italic field D, that the classes obtained by classifying simple rings by D form groups (Brauer groups) under tensor products, and then led to the concept of decomposition of simple rings, the Galois junction product, and finally to the concept of divisors. Her abstract methods were diverse and brilliant. Moreover, these results were deeply related to number theory, and later provided a turning point that led to the theory of cohomology of class fields. Her academic style had a strong influence on the abstraction of all mathematics. These studies were carried out in the context of discussions with young mathematicians who gathered around her, such as Kenjiro Shoda and Bartel Leendert van der Waerden (1903-1996), as well as Altin, Richard Dagobert Brauer (1901-1977), and H. Hasse. In 1933, she fled Nazi persecution and traveled to the United States, where she died of an illness in 1935. [Yasuo Akizuki] [References] | | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
ドイツの数学者。代数曲線論で知られるマックスMax Noether(1844―1921)を父としてエルランゲンに生まれる。初め、父の友人ゴルダンPaul Gordan(1837―1912)に不変式論を学んだ。1915年ゲッティンゲンに移り、ヒルベルトの下で研究を始めた。まず可換環において、イデアルの基底定理を約鎖律にいいかえ、その下で準素イデアルへの分解とその一意性について調べた。約鎖律とは極大条件にほかならず、今日、極大条件を満たす環をネーター環とよぶ由来はここにある。ついでデーデキント環の公理的建設を成し遂げたが、これにあたっては約鎖律のほかに倍鎖律を入れ、かつ整閉性の概念を導入した。判別式の研究では局所的考察を有効に取り入れたが、この研究で可換環から非可換環への転機がなされたと思われる。 ネーターの真骨頂、抽象代数学の真価は非可換環論にあり、群環を含む準単純環の理論の完成にある。すなわち、単純環Aは斜体Dにおける完全行列環に同形になること、単純環をそのDによって分類して得る類がテンソル積の下で群(Brauer群)をつくること、それから単純環の分解概念へ、そしてガロア接合積へ、ひいては因子団の概念へと導いていった内容は、多彩で、その抽象的手法は鮮やかであった。しかもこの結果は整数論とも深く関連し、のちにこれが類体のコホモロジー論化へ導く転機を与えることになった。そして彼女の学風は全数学の抽象化に強い影響を及ぼした。これらの研究は、彼女の下に集った若い数学者、正田建次郎やファン・デル・ワールデンBartel Leendert van der Waerden(1903―1996)、あるいはアルティン、ブラウアーRichard Dagobert Brauer(1901―1977)、H・ハッセらとの討論の下で行われた。1933年、ユダヤ人の彼女はナチスの迫害を逃れてアメリカに渡り、1935年、病を得て客死した。 [秋月康夫] [参照項目] | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Bedridden elderly person - netakiri roujin
>>: Nesosilicate minerals (Nesosilicate minerals)
A general term for insects belonging to the family...
...The subsequent military government and success...
[1] [noun] Vast plain. Oonu. *Kojiki (712), Vol. 1...
Year of death: January 22, 1941 Year of birth: Jul...
〘Noun〙 In the Ritsuryo system, this position belon...
…(2) The second generation (1843-1921, Tempo 14-T...
Soft tennis is a ball game that originated in Jap...
...The scientific name of the genus is derived fr...
The capital of the Morbihan department in western...
…Population: 28,000 (1982). Also called Corinth. ...
...(1) lies told in pretend play, (2) lies told d...
...Several oasis routes ran through the Sahara be...
(An acronym of extrasensory perception, ESP, with ...
A former town in Higashiyamanashi-gun, central Yam...
…The ground weave is usually plain weave, but the...