A field of study that describes the motion of celestial bodies based on Newton's law of universal gravitation. The law of universal gravitation was introduced to explain the laws relating to the motion of planets such as Mars and Venus, which were discovered by Kepler, but it applies not only to celestial bodies in the solar system, but also to all celestial bodies that have mass, and is also used in the study of the motion of stars in star clusters and the Milky Way, and the motion of galaxies in galaxy clusters. Any object with mass (celestial body) exerts a certain action on other objects (celestial bodies). Even if there are many celestial bodies, if all of their actions are added up, the motion of the celestial body that is being acted on can be explained one after another. In other words, within the scope of Newtonian mechanics, once all the initial conditions are determined, not only can the subsequent movements of all celestial bodies be clarified, but it is also possible to calculate them going back to the past. It is extremely difficult to analytically describe the motion of celestial bodies using a set of equations. When there are only two bodies, the motion of two bodies can be completely solved analytically, as was used in Kepler's laws. When there are three bodies, the motion can be solved analytically only when special initial conditions are used. In the 19th century, there was a lot of activity in searching for such special cases. Mathematicians such as French mathematicians Legendre and Poincaré were active in this field. Meanwhile, research on perturbation theory, which treats the influence of a third body as a slight disturbance to the motion between two bodies, progressed. This method is a powerful tool in cases where there is a celestial body with a large mass (the Sun), such as in the solar system. The discovery of Neptune in 1846 was one of the great triumphs of celestial mechanics, as it was discovered based on the calculation of the amount of perturbation caused by each planet on the motion of Uranus, and the prediction of the position of the celestial body that still had an influence that could not be explained by the calculation. In the 20th century, the main theme of celestial mechanics was how to perform calculations in a procedural manner, and there was not much substantial progress. However, since the 1950s, the development of computers and the launch of artificial satellites have dramatically improved the accuracy of celestial mechanics. As a result, the range of applications of celestial mechanics has expanded. Celestial mechanics played an important role in the moon landing of the Apollo spacecraft and the Voyager probes' exploration of Jupiter and Saturn. It has calculated the movements of asteroids and the moon going back millions of years, providing data to consider their origins. Stellar mechanics, which describes the movements of stars in the galaxy, has also developed. However, it should be noted that the range of applications of celestial mechanics is limited to cases where the influence of the theory of relativity is small, as seen in the problem of Mercury's perihelion shift. [Shuzo Isobe May 19, 2015] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
ニュートンの万有引力の法則に基づいて天体の運動を記述する学問分野。ケプラーの発見した火星や金星などの運動に関する法則を説明するために導入された万有引力の法則であるが、太陽系の天体ばかりでなく、質量をもつ天体にはすべて当てはまり、星団や銀河系内の星の運動、銀河団の中の銀河の運動の研究にも使われている。 質量をもつ物体(天体)は他の物体(天体)に一定の作用をする。いくつもの天体があっても、それらの作用をすべて加え合わせると、作用を受けている天体の運動を次々と説明できる。つまり、ニュートン力学が成り立つ範囲では、最初の条件がすべて決まれば、それ以後のすべての天体の動きを明らかにできるばかりでなく、過去にさかのぼって計算することも可能である。 天体の動きを一定の式を使って解析的に記述することは非常にむずかしい問題である。2体のみが存在する場合には、ケプラーの法則に使われたように、2体の運動を完全に解析的に解くことができる。3体の場合には特別の初期条件の場合にのみ解析的に解ける。このように特別な例を求めることが19世紀に精力的に行われた。フランスのルジャンドルやポアンカレなどの数学者が活躍した。 一方、3体目の影響を2体間の運動に対するわずかな乱れとして取り扱う摂動論の研究が進められた。この手法は、太陽系のように大きな質量をもつ天体(太陽)があるような場合には有力な手段である。1846年の海王星の発見は、天王星の動きに対する各惑星による摂動量が計算され、それでも説明しきれない影響を与える天体の位置が予言され、それに基づいて発見されたもので、天体力学の大きな勝利の一つである。 20世紀に入っての天体力学はいかに手順よく計算を進めるかが中心テーマで、あまり本質的な進展はみられなかった。しかし1950年代以降のコンピュータの発達と、人工衛星の打上げによって、その精度が飛躍的に向上した。その結果、天体力学の応用範囲も広がっている。月探査機アポロ号の月着陸や惑星探査機ボイジャーの木星・土星探査の際には天体力学は重要な役割を果たしている。小惑星や月の運動を数百万年以前にまでさかのぼって計算し、その起源を考えるデータを提供している。また銀河系内の星の運動を記述する恒星系力学も発展している。しかし、水星の近日点移動の問題にみられるように、天体力学の応用範囲は相対性理論の影響が小さい場合にのみ限られることを留意しなければならない。 [磯部琇三 2015年5月19日] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Astronomical Ephemeris - Tentaireki
>>: Celestial body nomenclature - Tentaimeimeiho
A Greek tragedy by Euripides written in the early ...
This term refers to both Latham's Snipe and Co...
…Born in New Hampshire. He initially studied bird...
...the Iroquois were Indians who lived in the for...
Indonesian bamboo percussion instruments. There a...
…Therefore, theology is said to be the knowledge ...
Also written as 'Kunage'. A deciduous tall...
Located in Mibu Naginomiya-cho, Nakagyo-ku, Kyoto...
A paradox that states that if the distribution of ...
〘Noun〙 (translation of agapē) A meal held in Chris...
Italian painter and mosaicist of the early Renais...
An aromatic hydrocarbon, also known as benzylbenze...
It is a branch of Christian practical theology, an...
...In addition to the Baths of Nero, Titus, and T...
A physician and a pioneer of the Koho school that...