Algebraic equations

Japanese: 代数方程式 - だいすうほうていしき
Algebraic equations

An equation with unknowns x, y, z, etc. is f(x,y,z,……)=0
When written in this form, if the expression on the left hand side is an algebraic expression (rational or irrational), it is called an algebraic equation.

[Tsuneo Adachi]

Binomial Equations

An equation of the form X m -a=0 is called a binomial equation. One of its solutions is expressed as m or a 1/m . When a is a positive real number, m is usually a positive real number.

[Tsuneo Adachi]

Cubic Equation

Cubic equation a 0 X 3 +a 1 X 2 +a 2 X+a 3 =0
(a 0 ≠ 0)
To solve this, first use the variable transformation x=ya 1 /3a 0 to get X 3 +3pX+q=0…………〔1〕
It is transformed into the following form:

Then, the solution to (1) is α 1/31/3 ,
ωα 1/32 β ​​1/3 ,
ω2α1 /3 +ωβ1 /3
Here, ω is (-1 +)/2. This formula is called Cardano's formula. Quartic equations can be solved by reducing them to cubic equations. The formula for this solution is called Ferrari's formula.

[Tsuneo Adachi]

Fundamental Theorem of Algebra

An n-th degree algebraic equation over the field of complex numbers (complex numbers include the case where they are real numbers. The same applies below) is f(x)=a 0 X n +a 1 X n-1 +……
+a n -1 X +a n = 0 ... (2)
(a 0 (≠0), a 1 ,……
, a n is a complex number)
The polynomial on the left side of [2] is always f(x)=a 0 (X-α 1 )……(X-α n ).
1 ,……,α n are complex numbers)
and a product of linear expressions. In other words, an n-th degree algebraic equation has n solutions if multiplicities are also taken into account. This is a theorem proven by Gauss, and is called the Fundamental Theorem of Classical Algebra. This property, that is, the property that an algebraic equation with complex coefficients always has a complex solution, is expressed as saying that the field of complex numbers is algebraically closed. For example, even an algebraic equation with rational coefficients does not necessarily have a rational solution, so the field of rational numbers is not algebraically closed. In this sense, we can see that the Fundamental Theorem of Classical Algebra is a theorem that shows the completeness of the field of complex numbers.

[Tsuneo Adachi]

Equations of degree 5 or higher

Algebraic equations up to degree four can be solved by using power roots, that is, by repeatedly solving binomial equations. This property means that algebraic equations of degree four or less can be solved algebraically.

In the early 19th century, Abel proved that algebraic equations of degree five or higher could not in general be solved algebraically. Galois then introduced the concept of groups and sought necessary and sufficient conditions for algebraic equations to be solvable algebraically. This was the beginning of group theory.

[Tsuneo Adachi]

Multivariate Algebraic Equations

When there is more than one unknown, an algebraic equation can have a meaning in plane figures, space figures, or even higher dimensional figures. For example, x 2 +y 2 -1=0
represents a circle. Algebraic geometry is the study of algebraic equations from a geometrical standpoint, and this field has made remarkable progress in recent years.

[Tsuneo Adachi]

[Reference item] | Group | Cubic equation

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

未知数x、y、z、……を含む方程式を
  f(x,y,z,……)=0
の形で書くとき、この左辺の式が代数式(有理式あるいは無理式)である方程式を代数方程式という。

[足立恒雄]

二項方程式

Xm-a=0の形の方程式を二項方程式という。その解の一つをmまたはa1/mで表す。aが正実数のときにはmは正実数とするのが普通である。

[足立恒雄]

三次方程式

三次方程式
 a0X3+a1X2+a2X+a3=0
 (a0≠0)
を解くには、まず変数変換x=y-a1/3a0により
 X3+3pX+q=0…………〔1〕
の形に変形する。次に

と置くと、〔1〕の解は
  α1/31/3,
  ωα1/32β1/3,
  ω2α1/3+ωβ1/3
で与えられる。ここにωは(-1+)/2である。この公式をカルダーノの公式という。四次方程式は三次方程式に還元して解かれる。その解の公式をフェラリの公式という。

[足立恒雄]

代数学の基本定理

複素数体上のn次代数方程式(複素数は実数である場合を含めていう。以下同様)とは
 f(x)=a0Xn+a1Xn-1+……
   +an-1X+an=0……〔2〕
   (a0(≠0),a1,……
   ,anは複素数)
という形の方程式である。〔2〕の左辺の多項式はかならず
 f(x)=a0(X-α1)……(X-αn)
 (α1,……,αnは複素数)
と一次式の積に分解できる。すなわちn次代数方程式は重複度も考慮すればn個の解を有する。これはガウスによって証明された定理で、古典代数学の基本定理とよばれる。この性質、すなわち、複素係数の代数方程式はかならず複素数解をもつという性質を、複素数体は代数的に閉じていると言い表す。たとえば有理係数の代数方程式でも、かならずしも有理数解をもつとは限らないから、有理数体は代数的に閉じていない。こういう意味から、古典代数学の基本定理は複素数体の完全性を表す一つの定理であることがわかる。

[足立恒雄]

五次以上の方程式

四次までの代数方程式はべき根を用いて、つまり、二項方程式を繰り返し解いて解を求めることができた。この性質を、四次以下の代数方程式は代数的に解けるという。

 19世紀初頭、アーベルは、五次以上の代数方程式は一般には代数的に解けないことを証明した。続いてガロアは、群の概念を導入して代数方程式が代数的に解ける必要十分条件を求めた。これが群論の始まりである。

[足立恒雄]

多元代数方程式

未知数の個数が一より多い場合は、代数方程式は平面図形や空間図形、さらには高次元図形としての意味をもつ。たとえば
 x2+y2-1=0
は円を表す。幾何学的な立場から代数方程式を研究するのが代数幾何学であり、この分野は近年著しい発達を遂げている。

[足立恒雄]

[参照項目] | | 三次方程式

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Soybean oil - Daizuyu (English spelling) soybean oil

>>:  Law of large numbers

Recommend

Turkmen - Turkmen (English spelling)

It is one of the Turkic languages. It is spoken b...

Milwaukee

Wisconsin is the largest city in the state, locat...

Regression equation - Kaikishiki

In regression analysis, the linear equation that a...

Church of Il Gesù - Il Gesù Church (English name)

The central church of the Society of Jesus in Rome...

Painting History - Gashi

Drawing. See the entry for "Ga" in the k...

Pak Yŏn (English spelling)

1378‐1458 A musician and official of the Yi Dynast...

Hakusan [town] - Hakusan

A former town in Ichishi County in central Mie Pre...

Nursing Care Certification Examination Board - Kaigoninteishinsakai

An institution established in a city or town that ...

Takaza - Stage

[1] 〘noun〙① A seat where the emperor or the shogun...

euxenite

…Niobium and tantalum have very similar propertie...

Umeya Kanbei - Umeya Kanbei

A Kabuki musician. There are three generations of ...

Marxist jurisprudence

A field of study that seeks to elucidate law and ...

Emptiness (Buddhism) - Kuu

...Because this perishes, that perishes." In...

Operating Leverage

Financial leverage is the use of liabilities that...

Akizuki

This area is located in the northern part of Asak...