Mathematical structure - mathematical structure

Japanese: 数学的構造 - すうがくてきこうぞう(英語表記)mathematical structure
Mathematical structure - mathematical structure

This is an important concept often used in mathematics, and it seeks to clarify the mechanisms by which things such as orders, groups, rings, fields, topological spaces, and measures are constructed and structured through relationships and algorithms, as well as the differences and similarities between them.

Let us first explain the order structure by taking Z , the set of integers, as an example. On Z , there is a magnitude relation ≦, such as 3≦5. The following properties are satisfied for all elements of Z. That is, (1) aa (reflexive law), (2) if ab , ba , then a = b (antisymmetric law), (3) if ab , bc , then ac (transitive law) and ab or ba hold. If we consider the set {( x , y )| xy } for this order relation, it defines a collection of ordered pairs of Z , that is, a subset of the Cartesian product Z × Z of Z. This is called the graph of the relation ≦. We can also think of the relation ≦ as a mapping from Z to truth values. That is, if we write truth as 1 and false as 0, and consider the set 2 = {0, 1}, then ≦ is a mapping, ≦: Z × Z →2. In this way, for a set A and a pair ( A : R ) of binary relations R on it, we have the property aRa
aRb , bRaab
aRb , bRcaRc
When this holds for all elements of A , the set ( A : R ) is called a partial order structure, and further, when aRb or bRa holds, it is called a linear order structure. In the case of Z , there is also 0 and arithmetic operations - and +, such as 5+(-2)=3, and the following property is satisfied. That is, a +0=0+ a = a (identity element)
a + (- a ) = (- a ) + a = 0 (inverse)
a + ( b + c ) = ( a + b ) + c (association law)
a + b = b + a (commutative law)
Thus, for a set A , its element e , a one-variable map ('), and a two-variable map (*), namely, ': AA and *: A × AA , the properties a * e = e * a = a ; a * a ' = a '* a = e ; a * ( b * c ) = ( a * b ) * c
When this holds for all elements of A , the set is said to have a group structure, or simply a group. Furthermore, when a * b = b * a holds, it is called an Abelian group or a commutative group. In this case, 0, -, and + are usually used instead of e , ', and *. Furthermore, in Z , there is 1 and multiplication ×, so that (2 + 3) × 5 = 2 × 5 + 3 × 5,
a × 1 = 1 × a = a (multiplicative identity)
a・( bc )=( ab )・c (association law)
a・( b + c ) = ab + ac , ( a + b )・c = ac + bc (distribution law)
In such cases, the set ( A : 0, -, +, 1, ×) is said to have a ring structure, or simply to be a ring. Usually, we say that A is a group or a ring without specifying the constants 0 and 1 or the mappings -, +, and ×, but in this case, the algorithms + and × are clear from the context.

For example, in the case of topological spaces, there are various definitions, such as neighborhood systems, open set families, and closures. If we use closures to describe it, the property for a set A and a mapping of the closure: P ( A )→ P ( A ) ( P ( A ) is the power set of A , i.e., all subsets of A ) is

When this holds for all subsets of A , ( A :  ̄) is called a topological structure or simply a topological space.

Such a concrete description of the relationships between certain fundamental sets and the mappings between them, as well as the relationships that hold between their elements (usually called axioms), is called a mathematical structure.

[Namba Kanji]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

数学でよく用いられる重要な概念で、たとえば順序、群、環、体(たい)、位相空間とか測度などが、どのような関係や算法によって組み立てられ、構造をなしているか、また、それらの差異や類似性がどのようになっているかの仕組みを明らかにしようとするものである。

 ここでは整数の全体Zを例にとり、まず順序構造について説明しよう。Zの上には3≦5というような大小関係≦がある。そして、すべてのZの元について次のような性質が満足されている。すなわち、(1)aa(反射律)、(2)ab, baならばab(反対称律)、(3)ab, bcならばac(推移律)およびabまたはbaが成立する。この順序関係に対して集合{(x, y)|xy}を考えれば、これはZの順序対の集まり、すなわちZの直積Z×Zの部分集合を定める。これを関係≦のグラフとよぶ。また関係≦をZから真偽値への写像と考えることもできる。すなわち真を1、偽を0で記し、その集まり2={0, 1}を考えれば、≦は写像として、≦:Z×Z→2である。このように一つの集合Aと、その上の二項関係Rの組(AR)について性質
  aRa
  aRb, bRaab
  aRb, bRcaRc
Aのすべての元について成立するとき、この組(AR)を部分順序構造、またさらに、aRbまたはbRaが成立するときに線形順序構造とよばれる。Zの場合はさらに5+(-2)=3のように0および算法-、+があって次のような性質が満足されている。すなわち
  a+0=0+aa(単位元)
  a+(-a)=(-a)+a=0(逆元)
  a+(bc)=(ab)+c(結合法則)
  abba(交換法則)
が成立している。このように集合Aと、その元e、1変数の写像(′)、2変数の写像(*)すなわち′:AAと*:A×AAの組(Ae, ′, *)について性質
  aeeaaaa′=a′*aea*(bc)=(ab)*c
Aのすべての元について成立するとき、この組を、群構造を有する、または単に群であるという。さらにabbaが成立するときアーベル群または可換群という。この場合には、通常e、′、*のかわりに0、-、+が用いられている。さらに、Zでは、1と乗法×があって(2+3)×5=2×5+3×5のように、
  a×1=1×aa(乗法の単位元)
  a・(bc)=(ab)・c(結合法則)
  a・(bc)=abac, (ab)・cacbc(分配法則)
が成立する。このような場合、組(A:0, -, +, 1, ×)は環構造を有するとか、単に環であるという。通常はこのような定数0、1とか写像-、+、×を明記しないで、Aは群であるとか環であるとかいうが、この場合、文脈から算法+とか×が明らかな場合である。

 また、たとえば位相空間の場合でも、いろいろの定義、すなわち近傍系、開集合族とか閉包によるものがあるが、閉包を用いて記述すれば、集合Aと閉包の写像 ̄:P(A)→P(A)(P(A)はAのべき集合、すなわちAの部分集合の全体)に対して性質

Aのすべての部分集合について成立するとき、(A: ̄)を位相構造または単に位相空間などとよぶ。

 このように何個かの基本的集合とその間の写像との関係と、それらの元の間に成立する関係(通常公理とよばれる)を具体的に述べたものを数学的構造とよんでいる。

[難波完爾]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Mathematics Puzzle

>>:  Mathematical induction

Recommend

blended wing-body

...In addition, a curved double delta wing planfo...

Farming Rites - Hatasakugirei

Agricultural rites associated with field crops. Be...

Coreopsis basalis (English spelling)

… [Eiichi Asayama]. … *Some of the terminology th...

《Memorial Days》

...This ambitious work attempts to put into words...

Galatea (place name) - Galatea

…the name of the northern region of Asia Minor. E...

Shozaburou Watase

Zoologist. Born in Edo, he studied at the Tokyo E...

Acocanthera spectabilis Don

An evergreen shrub of the Apocynaceae family. It i...

Gill, Sir David

Born: 12 June 1843, Aberdeen [Died] January 24, 19...

Perturbation theory

A theory of approximate solutions in celestial mec...

Sedimentation - Sedimentation

The process that contributes to the formation of s...

Meckel, Klemens Wilhelm Jakob

Year of death: 1906.7.5 (1906.7.5) Born: March 28,...

Thalia geniculata (English spelling) Thalia geniculata

… [Mitsuru Hotta]... *Some of the terminology tha...

jiva (English spelling)

He is widely known as the author of the Tattva Ar...

Fukuoka Plain - Fukuoka Heiya

A plain in the northwest of Fukuoka Prefecture, f...

Print - Hanpon

It is also written as "banbon". It is th...